Oxygen-diffusion-driven oxidation behavior and tracking areas visualized by X-ray spectro-ptychography with unsupervised learning

被引:38
作者
Hirose, Makoto [1 ,2 ]
Ishiguro, Nozomu [2 ]
Shimomura, Kei [1 ,2 ]
Duong-Nguyen Nguyen [3 ]
Matsui, Hirosuke [4 ]
Dam, Hieu Chi [3 ,5 ]
Tada, Mizuki [2 ,4 ]
Takahashi, Yukio [1 ,2 ,6 ]
机构
[1] Osaka Univ, Grad Sch, Dept Engn, Suita, Osaka 5650871, Japan
[2] RIKEN SPring 8 Ctr, Sayo Cho, Sayo, Hyogo 6795148, Japan
[3] Japan Adv Inst Sci & Technol, Nomi, Ishikawa 9231292, Japan
[4] Nagoya Univ, Grad Sch Sci, Dept Chem, Res Ctr Mat Sci,Chikusa Ku, Furo Cho, Nagoya, Aichi 4648602, Japan
[5] PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[6] Tohoku Univ, IMRAM, Sendai, Miyagi 9808577, Japan
关键词
CATALYST PARTICLES; STORAGE CAPACITY; PHASE; ORIGIN; SPACE; XAFS; TIME;
D O I
10.1038/s42004-019-0147-y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Oxygen storage and release with oxygen diffusion in the bulk of the cerium-zirconium solid solution oxide Ce2Zr2Ox (x = 7-8), which possesses an atomically ordered arrangement of cerium and zirconium atoms, is the key to three-way exhaust catalysis. Oxygen storage proceeds via heterogeneous oxygen diffusion into the vacant sites of Ce2Zr2O7 particles, but the heterogeneous oxygen diffusion track is erased after oxygen storage in the Ce2Zr2Ox bulk. Here we show three-dimensional hard X-ray spectro-ptychography to clearly visualize the three-dimensional cerium valence map in Ce2Zr2Ox particles, and unsupervised learning reveals the concealed oxygen-diffusion-driven three-dimensional nanoscale cerium oxidation behavior and tracking areas inside individual mixed-oxide particles during the oxygen storage process. The described approach may permit the nanoscale chemical imaging of reaction tracking areas in solid materials.
引用
收藏
页数:7
相关论文
共 38 条
[1]  
[Anonymous], 2018, ANGEW CHEM-GER EDIT
[2]  
[Anonymous], 2012, MACHINE LEARNING PRO
[3]  
Buurmans ILC, 2012, NAT CHEM, V4, P873, DOI [10.1038/NCHEM.1478, 10.1038/nchem.1478]
[4]   Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy [J].
de Smit, Emiel ;
Swart, Ingmar ;
Creemer, J. Fredrik ;
Hoveling, Gerard H. ;
Gilles, Mary K. ;
Tyliszczak, Tolek ;
Kooyman, Patricia J. ;
Zandbergen, Henny W. ;
Morin, Cynthia ;
Weckhuysen, Bert M. ;
de Groot, Frank M. F. .
NATURE, 2008, 456 (7219) :222-U39
[5]   Atomic-Scale Structure and Stability of the Low-Index Surfaces of Pyrochlore Oxides [J].
Dholabhai, Pratik P. ;
Perriot, Romain ;
Uberuaga, Blas P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (19) :10485-10499
[6]   Unsupervised Data Mining in nanoscale X-ray Spectro-Microscopic Study of NdFeB Magnet [J].
Duan, Xiaoyue ;
Yang, Feifei ;
Antono, Erin ;
Yang, Wenge ;
Pianetta, Piero ;
Ermon, Stefano ;
Mehta, Apurva ;
Liu, Yijin .
SCIENTIFIC REPORTS, 2016, 6
[7]  
Ertl G., 2008, Handbook of Heterogeneous Catalysis, V1
[8]   Big Data of Materials Science: Critical Role of the Descriptor [J].
Ghiringhelli, Luca M. ;
Vybiral, Jan ;
Levchenko, Sergey V. ;
Draxl, Claudia ;
Scheffler, Matthias .
PHYSICAL REVIEW LETTERS, 2015, 114 (10)
[9]   Use of Kramers-Kronig relation in phase retrieval calculation in X-ray spectro-ptychography [J].
Hirose, Makoto ;
Shimomura, Kei ;
Burdet, Nicolas ;
Takahashi, Yukio .
OPTICS EXPRESS, 2017, 25 (08) :8593-8603
[10]   Materials Cartography: Representing and Mining Materials Space Using Structural and Electronic Fingerprints [J].
Isayev, Olexandr ;
Fourches, Denis ;
Muratov, Eugene N. ;
Oses, Corey ;
Rasch, Kevin ;
Tropsha, Alexander ;
Curtarolo, Stefano .
CHEMISTRY OF MATERIALS, 2015, 27 (03) :735-743