Random walks of oriented particles on fractals

被引:7
作者
Haber, Rene [1 ]
Prehl, Janett [1 ]
Hoffmann, Karl Heinz [1 ]
Herrmann, Heiko [2 ]
机构
[1] Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
[2] Tallinn Univ Technol, Ctr Nonlinear Studies, Inst Cybernet, EE-12618 Tallinn, Estonia
关键词
random walks; diffusion in solids; anisotropic particles; SELF-AVOIDING-WALKS; FRACTIONAL DIFFUSION; ANOMALOUS DIFFUSION; EQUATION; IMPLEMENTATION; SUBDIFFUSION; LATTICES;
D O I
10.1088/1751-8113/47/15/155001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Random walks of point particles on fractals exhibit subdiffusive behavior, where the anomalous diffusion exponent is smaller than one, and the corresponding random walk dimension is larger than two. This is due to the limited space available in fractal structures. Here, we endow the particles with an orientation and analyze their dynamics on fractal structures. In particular, we focus on the dynamical consequences of the interactions between the local surrounding fractal structure and the particle orientation, which are modeled using an appropriate move class. These interactions can lead to particles becoming temporarily or permanently stuck in parts of the structure. A surprising finding is that the random walk dimension is not affected by the orientation while the diffusion constant shows a variety of interesting and surprising features.
引用
收藏
页数:14
相关论文
共 53 条
[1]   First observation of ferromagnetism and ferromagnetic domains in a liquid metal [J].
Albrecht, T ;
Buhrer, C ;
Fahnle, M ;
Maier, K ;
Platzek, D ;
Reske, J .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1997, 65 (02) :215-220
[2]   Diffusion in disordered fractals [J].
Anh, DHN ;
Hoffmann, KH ;
Seeger, S ;
Tarafdar, S .
EUROPHYSICS LETTERS, 2005, 70 (01) :109-115
[3]   Anomalous diffusion on random fractal composites [J].
Anh, Do Hoang Ngoc ;
Blaudeck, P. ;
Hoffmann, K. H. ;
Prehl, J. ;
Tarafdar, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (38) :11453-11465
[4]   Anomalous diffusion of proteins due to molecular crowding [J].
Banks, DS ;
Fradin, C .
BIOPHYSICAL JOURNAL, 2005, 89 (05) :2960-2971
[5]  
Ben-Avraham D., 2000, Diffusion and reactions in fractals and disordered systems
[6]   Scaling exponents for random walks on Sierpinski carpets and number of distinct sites visited: a new algorithm for infinite fractal lattices [J].
Dasgupta, R ;
Ballabh, TK ;
Tarafdar, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (37) :6503-6516
[7]   Clouds, fibres and echoes: a new approach to studying random walks on fractals [J].
Davison, M ;
Essex, C ;
Schulzky, C ;
Franz, A ;
Hoffmann, KH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (20) :L289-L296
[8]  
De Gennes P G, 1995, MONOGRAPHS PHYS
[9]  
de Gennes P G., 1976, La recherche, V7, P919
[10]   CONSERVATION LAWS FOR LIQUID CRYSTALS [J].
ERICKSEN, JL .
TRANSACTIONS OF THE SOCIETY OF RHEOLOGY, 1961, 5 :23-34