Robust Sparse 2D Principal Component Analysis for Object Recognition

被引:2
作者
Meng, Jicheng [1 ]
Zheng, Xiaolong [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Elect & Informat Engn, Hangzhou 310018, Zhejiang, Peoples R China
来源
APPLIED MATHEMATICS & INFORMATION SCIENCES | 2013年 / 7卷 / 06期
关键词
L1-norm; robust sparse two dimensional principal component analysis (RS2DPCA); object recognition; FACE-RECOGNITION; REPRESENTATION; PCA;
D O I
10.12785/amis/070645
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extensively investigate robust sparse two dimensional principal component analysis (RS2DPCA) that makes the best of semantic, structural information and suppresses outliers in this paper. The RS2DPCA combines the advantages of sparsity, 2D data format and L1-norm for data analysis. We also prove that RS2DPCA can offer a good solution of seeking spare 2D principal components. To verify the performance of RS2DPCA in object recognition, experiments are performed on three famous face databases, i.e. Yale, ORL, and FERET, and the experimental results show that the proposed RS2DPCA outperform the same class of algorithms for face recognition, such as robust sparse PCA, L1-norm-based 2DPCA.
引用
收藏
页码:2509 / 2514
页数:6
相关论文
共 50 条
  • [31] Exactly Uncorrelated Sparse Principal Component Analysis
    Kwon, Oh-Ran
    Lu, Zhaosong
    Zou, Hui
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (01) : 231 - 241
  • [32] Double robust principal component analysis
    Wang, Qianqian
    Gao, QuanXue
    Sun, Gan
    Ding, Chris
    NEUROCOMPUTING, 2020, 391 : 119 - 128
  • [33] Adaptive robust principal component analysis
    Liu, Yang
    Gao, Xinbo
    Gao, Quanxue
    Shao, Ling
    Han, Jungong
    NEURAL NETWORKS, 2019, 119 : 85 - 92
  • [34] SPARSE PRINCIPAL COMPONENT ANALYSIS WITH MISSING OBSERVATIONS
    Park, Seyoung
    Zhao, Hongyu
    ANNALS OF APPLIED STATISTICS, 2019, 13 (02) : 1016 - 1042
  • [35] A New Basis for Sparse Principal Component Analysis
    Chen, Fan
    Rohe, Karl
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (02) : 421 - 434
  • [36] Sparse Principal Component Analysis in Hilbert Space
    Qi, Xin
    Luo, Ruiyan
    SCANDINAVIAN JOURNAL OF STATISTICS, 2015, 42 (01) : 270 - 289
  • [37] Randomized nonlinear two-dimensional principal component analysis network for object recognition
    Sun, Zhijian
    Shao, Zhuhong
    Shang, Yuanyuan
    Li, Bicao
    Wu, Jiasong
    Bi, Hui
    MACHINE VISION AND APPLICATIONS, 2023, 34 (02)
  • [38] Lateral-Slice Sparse Tensor Robust Principal Component Analysis for Hyperspectral Image Classification
    Sun, Weiwei
    Yang, Gang
    Peng, Jiangtao
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (01) : 107 - 111
  • [39] Randomized nonlinear two-dimensional principal component analysis network for object recognition
    Zhijian Sun
    Zhuhong Shao
    Yuanyuan Shang
    Bicao Li
    Jiasong Wu
    Hui Bi
    Machine Vision and Applications, 2023, 34
  • [40] SPARSE REGRESSION ANALYSIS FOR OBJECT RECOGNITION
    Zhang, Baochang
    Zhang, Shengping
    Liu, Jianzhuang
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,