Robust Sparse 2D Principal Component Analysis for Object Recognition

被引:2
作者
Meng, Jicheng [1 ]
Zheng, Xiaolong [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Elect & Informat Engn, Hangzhou 310018, Zhejiang, Peoples R China
来源
APPLIED MATHEMATICS & INFORMATION SCIENCES | 2013年 / 7卷 / 06期
关键词
L1-norm; robust sparse two dimensional principal component analysis (RS2DPCA); object recognition; FACE-RECOGNITION; REPRESENTATION; PCA;
D O I
10.12785/amis/070645
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extensively investigate robust sparse two dimensional principal component analysis (RS2DPCA) that makes the best of semantic, structural information and suppresses outliers in this paper. The RS2DPCA combines the advantages of sparsity, 2D data format and L1-norm for data analysis. We also prove that RS2DPCA can offer a good solution of seeking spare 2D principal components. To verify the performance of RS2DPCA in object recognition, experiments are performed on three famous face databases, i.e. Yale, ORL, and FERET, and the experimental results show that the proposed RS2DPCA outperform the same class of algorithms for face recognition, such as robust sparse PCA, L1-norm-based 2DPCA.
引用
收藏
页码:2509 / 2514
页数:6
相关论文
共 50 条
  • [21] Weighted sparse principal component analysis
    Van Deun, Katrijn
    Thorrez, Lieven
    Coccia, Margherita
    Hasdemir, Dicle
    Westerhuis, Johan A.
    Smilde, Age K.
    Van Mechelen, Iven
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2019, 195
  • [22] 2D object recognition on a reconfigurable mesh
    Guerra, C
    PATTERN RECOGNITION, 1998, 31 (01) : 83 - 88
  • [23] An integrated approach to 2D object recognition
    Friedland, NS
    Rosenfeld, A
    PATTERN RECOGNITION, 1997, 30 (03) : 525 - 535
  • [24] Face Recognition Using Principal Component Analysis
    Kaur, Ramandeep
    Himanshi, Er.
    2015 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2015, : 585 - 589
  • [25] Object recognition through the principal component analysis of spatial relationship amongst lines
    Shekar, BH
    Guru, DS
    Nagabhushan, P
    COMPUTER VISION - ACCV 2006, PT I, 2006, 3851 : 170 - 179
  • [26] Nuclear norm based two-dimensional sparse principal component analysis
    Chen, Yudong
    Lai, Zhihui
    Wen, Jiajun
    Gao, Can
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2018, 16 (02)
  • [27] (2D)2 FLD:: An efficient approach for appearance based object recognition
    Nagabhushan, P
    Guru, DS
    Shekar, BH
    NEUROCOMPUTING, 2006, 69 (7-9) : 934 - 940
  • [28] (2D)2 FPCA: An Efficient Approach for Appearance Based Object Recognition
    Yu Chengbo
    Qing Huafeng
    Zhang Lian
    2009 3RD INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1-11, 2009, : 2170 - 2173
  • [29] A Selective Overview of Sparse Principal Component Analysis
    Zou, Hui
    Xue, Lingzhou
    PROCEEDINGS OF THE IEEE, 2018, 106 (08) : 1311 - 1320
  • [30] Optimal solutions for sparse principal component analysis
    d'Aspremont, Alexandre
    Bach, Francis
    El Ghaoui, Laurent
    JOURNAL OF MACHINE LEARNING RESEARCH, 2008, 9 : 1269 - 1294