Robust Sparse 2D Principal Component Analysis for Object Recognition

被引:2
作者
Meng, Jicheng [1 ]
Zheng, Xiaolong [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Elect & Informat Engn, Hangzhou 310018, Zhejiang, Peoples R China
来源
APPLIED MATHEMATICS & INFORMATION SCIENCES | 2013年 / 7卷 / 06期
关键词
L1-norm; robust sparse two dimensional principal component analysis (RS2DPCA); object recognition; FACE-RECOGNITION; REPRESENTATION; PCA;
D O I
10.12785/amis/070645
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extensively investigate robust sparse two dimensional principal component analysis (RS2DPCA) that makes the best of semantic, structural information and suppresses outliers in this paper. The RS2DPCA combines the advantages of sparsity, 2D data format and L1-norm for data analysis. We also prove that RS2DPCA can offer a good solution of seeking spare 2D principal components. To verify the performance of RS2DPCA in object recognition, experiments are performed on three famous face databases, i.e. Yale, ORL, and FERET, and the experimental results show that the proposed RS2DPCA outperform the same class of algorithms for face recognition, such as robust sparse PCA, L1-norm-based 2DPCA.
引用
收藏
页码:2509 / 2514
页数:6
相关论文
共 24 条
[21]  
Zhang GM, 2012, APPL MATH INFORM SCI, V6, P93
[22]   Face recognition: A literature survey [J].
Zhao, W ;
Chellappa, R ;
Phillips, PJ ;
Rosenfeld, A .
ACM COMPUTING SURVEYS, 2003, 35 (04) :399-459
[23]   Sparse principal component analysis [J].
Zou, Hui ;
Hastie, Trevor ;
Tibshirani, Robert .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (02) :265-286
[24]   Bidirectional PCA with assembled matrix distance metric for image recognition [J].
Zuo, Wangmeng ;
Zhang, David ;
Wang, Kuanquan .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2006, 36 (04) :863-872