NONLINEAR *-LIE DERIVATIONS OF STANDARD OPERATOR ALGEBRAS

被引:36
作者
Jing, Wu [1 ]
机构
[1] Fayetteville State Univ, Dept Math & Comp Sci, Fayetteville, NC 28301 USA
关键词
Nonlinear *-Lie derivation; derivation; standard operator algebra; MAPPINGS; RINGS;
D O I
10.2989/16073606.2016.1247119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be an infinite dimensional complex Hilbert space and A be a standard operator algebra on H which is closed under the adjoint operation. We prove that every nonlinear *-Lie derivation delta of A is automatically linear. Moreover, delta is an inner *-derivation.
引用
收藏
页码:1037 / 1046
页数:10
相关论文
共 8 条
[2]   ADDITIVITY OF JORDAN (TRIPLE) DERIVATIONS ON RINGS [J].
Jing, Wu ;
Lu, Fangyan .
COMMUNICATIONS IN ALGEBRA, 2012, 40 (08) :2700-2719
[3]  
Jing W, 2012, LINEAR MULTILINEAR A, V60, P167
[4]   Lie derivable maps on B(X) [J].
Lu, Fangyan ;
Liu, Benhong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 372 (02) :369-376
[5]  
Martindale W.S., 1964, Michigan Math. J., V11, P183
[6]   WHEN ARE MULTIPLICATIVE MAPPINGS ADDITIVE [J].
MARTINDALE, WS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 21 (03) :695-+
[7]   ADDITIVE DERIVATIONS OF SOME OPERATOR-ALGEBRAS [J].
SEMRL, P .
ILLINOIS JOURNAL OF MATHEMATICS, 1991, 35 (02) :234-240
[8]   Nonlinear *-Lie derivations on factor von Neumann algebras [J].
Yu, Weiyan ;
Zhang, Jianhua .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (08) :1979-1991