Inverse Modeling of CO2 Fluxes Using GOSAT Data and Multi-Year Ground-Based Observations

被引:33
作者
Saeki, T. [1 ]
Maksyutov, S. [1 ]
Saito, M. [2 ]
Valsala, V. [3 ]
Oda, T. [4 ,5 ]
Andres, R. J. [6 ]
Belikov, D. [1 ,7 ]
Tans, P. [5 ]
Dlugokencky, E. [5 ]
Yoshida, Y. [1 ]
Morino, I. [1 ]
Uchino, O. [1 ]
Yokota, T. [1 ]
机构
[1] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan
[2] Lab Sci Climat & Environm, Gif Sur Yvette, France
[3] Indian Inst Trop Meteorol, Pune, Maharashtra, India
[4] Colorado State Univ, Ft Collins, CO 80523 USA
[5] NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO USA
[6] Oak Ridge Natl Lab, Oak Ridge, TN USA
[7] Natl Inst Polar Res, Tokyo, Japan
关键词
CARBON-DIOXIDE; RETRIEVAL ALGORITHM; SATELLITE-OBSERVATIONS; VALIDATION; SPECTROMETER; ASSIMILATION; ECOSYSTEMS; METHANE; BUDGET; SINKS;
D O I
10.2151/sola.2013-011
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We present surface CO2 flux estimates obtained by an inverse modeling analysis from column-averaged dry air mole fractions of CO2 (XCO2) observed by the Greenhouse gases Observing SATellite (GOSAT) and ground-based data. Two inversion cases were examined: 1) a decadal inversion using ground-based CO2 observations by NOAA from 1999 to 2010 to derive CO2 flux interannual variability, and 2) an inversion using NOAA plus NIES GOSAT XCO2 data from June 2009 to October 2010. We used single-shot GOSAT data and individual NOAA flask data for the inversions. Our results show differences in estimated fluxes between the NOAA data inversion and the NOAA plus GOSAT data inversion, especially in Northern Eurasia and in Equatorial Africa and America where the ground-based observational sites were sparse. Uncertainty reduction rates of 40%-70% were achieved by inclusion of GOSAT data, compared to the case using just the NOAA data. The inclusion of GOSAT data in the inversion resulted in larger summer sinks in northwest Boreal Eurasia and a smaller summer sink in southeast Boreal Eurasia, with a clear uncertainty reduction in both regions. Adding GOSAT data also led to increase in Tropical African fluxes in boreal winter beyond interannual variability from NOAA data inversions.
引用
收藏
页码:45 / 50
页数:6
相关论文
共 35 条
[1]   Carbon dioxide variations in the stratosphere over Japan, Scandinavia and Antarctica [J].
Aoki, S ;
Nakazawa, T ;
Machida, T ;
Sugawara, S ;
Morimoto, S ;
Hashida, G ;
Yamanouchi, T ;
Kawamura, K ;
Honda, H .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2003, 55 (02) :178-186
[2]   TransCom 3 inversion intercomparison:: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988-2003 -: art. no. GB1002 [J].
Baker, DF ;
Law, RM ;
Gurney, KR ;
Rayner, P ;
Peylin, P ;
Denning, AS ;
Bousquet, P ;
Bruhwiler, L ;
Chen, YH ;
Ciais, P ;
Fung, IY ;
Heimann, M ;
John, J ;
Maki, T ;
Maksyutov, S ;
Masarie, K ;
Prather, M ;
Pak, B ;
Taguchi, S ;
Zhu, Z .
GLOBAL BIOGEOCHEMICAL CYCLES, 2006, 20 (01)
[3]   Simulations of column-averaged CO2 and CH4 using the NIES TM with a hybrid sigma-isentropic (σ-θ) vertical coordinate [J].
Belikov, D. A. ;
Maksyutov, S. ;
Sherlock, V. ;
Aoki, S. ;
Deutscher, N. M. ;
Dohe, S. ;
Griffith, D. ;
Kyro, E. ;
Morino, I. ;
Nakazawa, T. ;
Notholt, J. ;
Rettinger, M. ;
Schneider, M. ;
Sussmann, R. ;
Toon, G. C. ;
Wennberg, P. O. ;
Wunch, D. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (04) :1713-1732
[4]   Atmospheric methane and carbon dioxide from SCIAMACHY satellite data:: initial comparison with chemistry and transport models [J].
Buchwitz, M ;
de Beek, R ;
Burrows, JP ;
Bovensmann, H ;
Warneke, T ;
Notholt, J ;
Meirink, JF ;
Goede, APH ;
Bergamaschi, P ;
Körner, S ;
Heimann, M ;
Schulz, A .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :941-962
[5]   AIRS-based versus flask-based estimation of carbon surface fluxes [J].
Chevallier, Frederic ;
Engelen, Richard J. ;
Carouge, Claire ;
Conway, Thomas J. ;
Peylin, Philippe ;
Pickett-Heaps, Christopher ;
Ramonet, Michel ;
Rayner, Peter J. ;
Xueref-Remy, Irene .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
[6]  
Conway T. J., 2012, ATMOSPHERIC CARBON D
[7]   The ACOS CO2 retrieval algorithm - Part II: Global XCO2 data characterization [J].
Crisp, D. ;
Fisher, B. M. ;
O'Dell, C. ;
Frankenberg, C. ;
Basilio, R. ;
Boesch, H. ;
Brown, L. R. ;
Castano, R. ;
Connor, B. ;
Deutscher, N. M. ;
Eldering, A. ;
Griffith, D. ;
Gunson, M. ;
Kuze, A. ;
Mandrake, L. ;
McDuffie, J. ;
Messerschmidt, J. ;
Miller, C. E. ;
Morino, I. ;
Natraj, V. ;
Notholt, J. ;
O'Brien, D. M. ;
Oyafuso, F. ;
Polonsky, I. ;
Robinson, J. ;
Salawitch, R. ;
Sherlock, V. ;
Smyth, M. ;
Suto, H. ;
Taylor, T. E. ;
Thompson, D. R. ;
Wennberg, P. O. ;
Wunch, D. ;
Yung, Y. L. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (04) :687-707
[8]  
Dolman A. J., 2012, BIOGEOSCIENCES DISCU, V9, P6579, DOI [10.5194/bgd-9-6579-2012,2012, DOI 10.5194/BGD-9-6579-2012]
[9]   Estimating atmospheric CO2 from advanced infrared satellite radiances within an operational four-dimensional variational (4D-Var) data assimilation system:: Results and validation -: art. no. D18305 [J].
Engelen, RJ ;
McNally, AP .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D18) :1-9
[10]  
Enting I.G., 2002, Inverse problems in atmospheric constituent transport