Adomian decomposition method for solving two-dimensional nonlinear Volterra fuzzy integral equations

被引:10
作者
Alidema, Artan [1 ]
Georgieva, Atanaska [2 ]
机构
[1] Univ Prishtina Hasan Prishtina, FMNS, Str Nena Tereze 1000, Prishtina, Kosovo
[2] Univ Plovdiv Paisii Hilendarski, Fac Math & Informat, 24 Tzar Asen, Plovdiv 4000, Bulgaria
来源
PROCEEDINGS OF THE 44TH INTERNATIONAL CONFERENCE "APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS" | 2018年 / 2048卷
关键词
DIFFERENTIAL-CALCULUS; NUMERICAL-SOLUTION;
D O I
10.1063/1.5082108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A numerical method for solving two-dimensional nonlinear Volterra fuzzy integral equation (2D-NVFIE) of the second kind will is introduced. We convert a nonlinear Volterra fuzzy integral equation to a nonlinear system of Volterra integral equation in crisp case. We use Adomian Decomposition Method (ADM) to find the approximate solution of this system and hence obtain an approximation for fuzzy solution of the nonlinear Volterra fuzzy integral equation. Also, the existence and uniqueness of the solution and convergence of the proposed method are proved. Some numerical examples are included to demonstrate the validity and applicability of the proposed technique.
引用
收藏
页数:8
相关论文
共 27 条
[1]   The Adomian decomposition method applied to the Fuzzy system of Fredholm integral equations of the second kind [J].
Abbasbandy, S ;
Allahviranloo, T .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2006, 14 (01) :101-110
[3]  
Adomian G, 1994, SOLVING FRONTIER PRO, P12
[4]  
Ahmadi M. Barkhordari, 2011, INT J IND MATH, V3, P67
[5]   Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method [J].
Babolian, E ;
Goghary, HS ;
Abbasbandy, S .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 161 (03) :733-744
[6]  
Behzadi S. S., 2011, INT FUZZY SET VALUED, V35
[7]   Solving fuzzy second-order nonlinear Volterra-Fredholm integro-differential equations by using Picard method [J].
Behzadi, Sh S. ;
Allahviranloo, T. ;
Abbasbandy, S. .
NEURAL COMPUTING & APPLICATIONS, 2012, 21 :S337-S346
[8]   TOWARDS FUZZY DIFFERENTIAL-CALCULUS .2. INTEGRATION ON FUZZY INTERVALS [J].
DUBOIS, D ;
PRADE, H .
FUZZY SETS AND SYSTEMS, 1982, 8 (02) :105-116
[9]   TOWARDS FUZZY DIFFERENTIAL-CALCULUS .3. DIFFERENTIATION [J].
DUBOIS, D ;
PRADE, H .
FUZZY SETS AND SYSTEMS, 1982, 8 (03) :225-233
[10]  
El-Kalla I. L., 2008, J APPL MATH COMPUTIN, V21, P327