Visualizing size-dependent deformation mechanism transition in Sn

被引:61
|
作者
Tian, Lin [1 ,2 ]
Li, Ju [1 ,2 ,3 ,4 ]
Sun, Jun [1 ,2 ]
Ma, Evan [1 ,2 ,5 ]
Shan, Zhi-Wei [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Ctr Adv Mat Performance Nanoscale CAMP Nano, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Hysitron Appl Res Ctr China, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[3] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
[4] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[5] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
关键词
GRAIN-BOUNDARY DIFFUSION; BEHAVIOR; SURFACE; CREEP; ELECTROMIGRATION; PLASTICITY; STRENGTH; TRACER; REGIME;
D O I
10.1038/srep02113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Displacive deformation via dislocation slip and deformation twinning usually plays a dominant role in the plasticity of crystalline solids at room temperature. Here we report in situ quantitative transmission electron microscope deformation tests of single crystal Sn samples. We found that when the sample size was reduced from 450 nm down to 130 nm, diffusional deformation replaces displacive plasticity as the dominant deformation mechanism at room temperature. At the same time, the strength-size relationship changed from "smaller is stronger" to "smaller is much weaker''. The effective surface diffusivity calculated based on our experimental data matches well with that reported in literature for boundary diffusion. The observed change in the deformation mode arises from the sample size-dependent competition between the Hall-Petch-like strengthening of displacive processes and Coble diffusion softening processes. Our findings have important implications for the stability and reliability of nanoscale devices such as metallic nanogaps.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Size-dependent deformation mechanisms of Al nanopillars
    Milne, R. J.
    Lockwood, A. J.
    Inkson, B. J.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (48)
  • [12] Size-Dependent Deformation of Nanocrystalline Pt Nanopillars
    Gu, X. Wendy
    Loynachan, Colleen N.
    Wu, Zhaoxuan
    Zhang, Yong-Wei
    Srolovitz, David J.
    Greer, Julia R.
    NANO LETTERS, 2012, 12 (12) : 6385 - 6392
  • [13] Size-dependent Curie transition of Ni nanocrystals
    Lu, H. M.
    Li, P. Y.
    Huang, Y. N.
    Meng, X. K.
    Zhang, X. Y.
    Liu, Q.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (02)
  • [14] Size-dependent spin reorientation transition in nanoplatelets
    Vedmedenko, EY
    Oepen, HP
    Kirschner, J
    PHYSICAL REVIEW B, 2003, 67 (01)
  • [15] Size-dependent Curie transition of Ni nanocrystals
    Lu, H.M.
    Li, P.Y.
    Huang, Y.N.
    Meng, X.K.
    Zhang, X.Y.
    Liu, Q.
    Journal of Applied Physics, 2009, 105 (02):
  • [16] Size-Dependent Phase Transition in Perovskite Nanocrystals
    Liu, Lige
    Zhao, Ru
    Xiao, Changtao
    Zhang, Feng
    Pevere, Federico
    Shi, Kebin
    Huang, Houbing
    Zhong, Haizheng
    Sychugov, Ilya
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (18): : 5451 - 5457
  • [17] Size-Dependent Role of Surfaces in the Deformation of Platinum Nanoparticles
    Azadehranjbar, Soodabeh
    Ding, Ruikang
    Espinosa, Ingrid M. Padilla
    Martini, Ashlie
    Jacobs, Tevis D. B.
    ACS NANO, 2023, 17 (09) : 8133 - 8140
  • [18] Size-dependent deformation mechanisms in hollow silicon nanoparticles
    Yang, L.
    Bian, J. J.
    Zhang, H.
    Niu, X. R.
    Wang, G. F.
    AIP ADVANCES, 2015, 5 (07):
  • [19] Size-dependent deformation behavior of nanocrystalline graphene sheets
    Yang, Zhi
    Huang, Yuhong
    Ma, Fei
    Sun, Yunjin
    Xu, Kewei
    Chu, Paul K.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2015, 198 : 95 - 101
  • [20] Size-Dependent Melting Behavior of Colloidal In, Sn, and Bi Nanocrystals
    Liu, Minglu
    Wang, Robert Y.
    SCIENTIFIC REPORTS, 2015, 5