OPTICAL SOLITONS IN MULTI-DIMENSIONS WITH SPATIO-TEMPORAL DISPERSION AND NON-KERR LAW NONLINEARITY

被引:46
作者
Xu, Yanan [1 ]
Jovanoski, Zlatko [2 ]
Bouasla, Abdelaziz [3 ]
Triki, Houria [3 ]
Moraru, Luminita [4 ]
Biswas, Anjan [1 ,5 ]
机构
[1] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
[2] UNSW Canberra, Appl & Ind Math Res Grp, Sch Phys Environm & Math Sci, Canberra, ACT 2600, Australia
[3] Badji Mokhtar Univ, Dept Phys, Fac Sci, Annaba 23000, Algeria
[4] Univ Dunarea Jos Galati, Dept Chem Phys & Environm, Galati 800201, Romania
[5] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 80203, Saudi Arabia
关键词
Solitons; non-Kerr law; integrability; constraints; SPATIAL SOLITONS; EQUATION; PERTURBATION; PROPAGATION; GENERATION; SYSTEM; FIELD;
D O I
10.1142/S0218863513500355
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper studies the dynamics of optical solitons in multi-dimensions with spatio-temporal dispersion and non-Kerr law nonlinearity. The integrability aspect is the main focus of this paper. Five different forms of nonlinearity are considered - Kerr law, power law, parabolic law, dual-power law and log law nonlinearity. The traveling wave hypothesis, ansatz approach and the semi-inverse variational principle are the integration tools that are adopted to retrieve the soliton solutions to the governing equation. As a result, several constraint conditions arise out of the integration process and represent necessary conditions for the existence of solitons.
引用
收藏
页数:30
相关论文
共 29 条
[1]   Impedance matching in RF excited fast axial flow CO2 laser: The role of the capacitance due to laser head [J].
Bhagat, M. S. ;
Biswas, A. K. ;
Rana, L. B. ;
Kukreja, L. M. .
OPTICS AND LASER TECHNOLOGY, 2012, 44 (07) :2217-2222
[2]  
Biswas A., 2006, Introduction to Non-Kerr Law Optical solitons
[3]   OPTICAL SOLITON PERTURBATION IN NANOFIBERS WITH IMPROVED NONLINEAR SCHRODINGER'S EQUATION BY SEMI-INVERSE VARIATIONAL PRINCIPLE [J].
Biswas, Anjan ;
Milovic, Daniela ;
Savescu, Michelle ;
Mahmood, Mohammad F. ;
Khan, Kaisar R. ;
Kohl, Russell .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2012, 21 (04)
[4]   ON A CLASS OF PHYSICALLY IMPORTANT INTEGRABLE EQUATIONS [J].
FOKAS, AS .
PHYSICA D-NONLINEAR PHENOMENA, 1995, 87 (1-4) :145-150
[5]   Darboux transformation for an integrable generalization of the nonlinear Schrodinger equation [J].
Geng, Xianguo ;
Lv, Yanyan .
NONLINEAR DYNAMICS, 2012, 69 (04) :1621-1630
[6]   Bright and dark optical solitons with time-dependent coefficients in a non-Kerr law media [J].
Green, Patrice D. ;
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (12) :3865-3873
[7]   Tunable spectral switching in the far field with a chirped cosh-Gaussian pulse [J].
Jana, Soumendu ;
Konar, S. .
OPTICS COMMUNICATIONS, 2006, 267 (01) :24-31
[8]  
Jovanoski Z, 2001, J MOD OPTIC, V48, P1179, DOI 10.1080/09500340010028071
[9]   Optical soliton perturbation in a non-Kerr law media [J].
Kohl, Russell ;
Biswas, Anjan ;
Milovic, Daniela ;
Zerrad, Essaid .
OPTICS AND LASER TECHNOLOGY, 2008, 40 (04) :647-662
[10]   Optical Solitons by He's Variational Principle in a Non-Kerr Law Media [J].
Kohl, Russell ;
Milovic, Daniela ;
Zerrad, Essaid ;
Biswas, Anjan .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2009, 30 (05) :526-537