Understanding and Discovering Deliberate Self-harm Content in Social Media
被引:29
|
作者:
Wang, Yilin
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Tempe, AZ 85287 USAArizona State Univ, Tempe, AZ 85287 USA
Wang, Yilin
[1
]
Tang, Jiliang
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, E Lansing, MI 48824 USAArizona State Univ, Tempe, AZ 85287 USA
Tang, Jiliang
[2
]
Li, Jundong
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Tempe, AZ 85287 USAArizona State Univ, Tempe, AZ 85287 USA
Li, Jundong
[1
]
Li, Baoxin
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Tempe, AZ 85287 USAArizona State Univ, Tempe, AZ 85287 USA
Li, Baoxin
[1
]
Wan, Yali
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Seattle, WA USAArizona State Univ, Tempe, AZ 85287 USA
Wan, Yali
[3
]
Mellina, Clayton
论文数: 0引用数: 0
h-index: 0
机构:
Yahoo Res, Sunnyvale, CA USAArizona State Univ, Tempe, AZ 85287 USA
Mellina, Clayton
[4
]
O'Hare, Neil
论文数: 0引用数: 0
h-index: 0
机构:
Yahoo Res, Sunnyvale, CA USAArizona State Univ, Tempe, AZ 85287 USA
O'Hare, Neil
[4
]
Chang, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Huawei Res Amer, Santa Clara, CA USAArizona State Univ, Tempe, AZ 85287 USA
Chang, Yi
[5
]
机构:
[1] Arizona State Univ, Tempe, AZ 85287 USA
[2] Michigan State Univ, E Lansing, MI 48824 USA
[3] Univ Washington, Seattle, WA USA
[4] Yahoo Res, Sunnyvale, CA USA
[5] Huawei Res Amer, Santa Clara, CA USA
来源:
PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17)
|
2017年
关键词:
Mental Health;
User Modeling;
Computational Health;
Multimodal Data Mining;
Social Media Mining;
SUICIDE;
DEPRESSION;
D O I:
10.1145/3038912.3052555
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Studies suggest that self-harm users found it easier to discuss self-harm-related thoughts and behaviors using social media than in the physical world. Given the enormous and increasing volume of social media data, on-line self-harm content is likely to be buried rapidly by other normal content. To enable voices of self-harm users to be heard, it is important to distinguish self-harm content from other types of content. In this paper, we aim to understand self-harm content and provide automatic approaches to its detection. We first perform a comprehensive analysis on self-harm social media using different input cues. Our analysis, the first of its kind in large scale, reveals a number of important findings. Then we propose frameworks that incorporate the findings to discover self-harm content under both supervised and unsupervised settings. Our experimental results on a large social media dataset from Flickr demonstrate the effectiveness of the proposed frameworks and the importance of our findings in discovering self-harm content.
机构:
Univ New South Wales, Black Dog Inst, Sch Psychiat, Hosp Rd, Sydney, NSW 2031, AustraliaUniv New South Wales, Black Dog Inst, Sch Psychiat, Hosp Rd, Sydney, NSW 2031, Australia
Tighe, Joseph
Nicholas, Jennifer
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Black Dog Inst, Sydney, NSW, AustraliaUniv New South Wales, Black Dog Inst, Sch Psychiat, Hosp Rd, Sydney, NSW 2031, Australia
Nicholas, Jennifer
Shand, Fiona
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Black Dog Inst, Sydney, NSW, AustraliaUniv New South Wales, Black Dog Inst, Sch Psychiat, Hosp Rd, Sydney, NSW 2031, Australia
Shand, Fiona
Christensen, Helen
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Black Dog Inst, Sydney, NSW, AustraliaUniv New South Wales, Black Dog Inst, Sch Psychiat, Hosp Rd, Sydney, NSW 2031, Australia