MISSING BOUNDARY DATA RECONSTRUCTION VIA AN APPROXIMATE OPTIMAL CONTROL

被引:17
作者
Aboulaich, Rajae [1 ]
Ben Abda, Amel [2 ]
Kallel, Moez [3 ,4 ]
机构
[1] LERMA, Ecole Mohammadia Ingn, Rabat, Morocco
[2] LAMSIN, Ecole Natl Ingn Tunis, Tunis 1002, Tunisia
[3] LAMSIN, ENIT, Tunis 1002, Tunisia
[4] Inst Preparatoire Etud Ingn Tunis, Tunis 1002, Tunisia
关键词
inverse problem; Cauchy problem; optimal control; regularization;
D O I
10.3934/ipi.2008.2.411
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An approximate optimal control formulation of the Cauchy problem for elliptic equations is considered. A cost functional adding a fading through the iterations regularizing term borrowed from the domain decomposition communauty is proposed. Convergence of the descretized finite elements solution to the continuous one is proved. Numerical experiments involving smooth, non-smooth geometries as well as anisotropy highlight the capability of the present missing boundary data recovering process.
引用
收藏
页码:411 / 426
页数:16
相关论文
共 19 条
[1]   Solving Cauchy problems by minimizing an energy-like functional [J].
Andrieux, S ;
Baranger, TN ;
Ben Abda, A .
INVERSE PROBLEMS, 2006, 22 (01) :115-133
[2]  
[Anonymous], FREEFEM
[3]   On Cauchy's problem:: II.: Completion, regularization and approximation [J].
Azaiez, Mejdi ;
Ben Belgacem, Faker ;
El Fekih, Henda .
INVERSE PROBLEMS, 2006, 22 (04) :1307-1336
[4]   Existence of approximate controls for a semilinear Laplace equation [J].
Bodart, O .
INVERSE PROBLEMS, 1996, 12 (01) :27-33
[5]  
Bonnans F., 1997, Optimisation Numerique: Aspects theoriques et pratiques (Mathematiques et Applications)
[6]  
Cakoni F, 2007, INVERSE PROBL IMAG, V1, P229
[7]   The balancing principle for the regularization of elliptic Cauchy problems [J].
Cao, Hui ;
Pereverzev, Sergei V. .
INVERSE PROBLEMS, 2007, 23 (05) :1943-1961
[8]   Convergence analysis for finite element approximation to an inverse Cauchy problem [J].
Chakib, A. ;
Nachaoui, A. .
INVERSE PROBLEMS, 2006, 22 (04) :1191-1206
[9]  
Ciarlet P., 1994, INTRO ANAL NUMERIQUE
[10]   Recovery of cracks from incomplete boundary data [J].
Cimetière, A ;
Delvare, F ;
Jaoua, M ;
Kallel, M ;
Pons, F .
INVERSE PROBLEMS IN ENGINEERING, 2002, 10 (04) :377-392