Low-dimensional homogeneous Einstein manifolds

被引:39
作者
Böhm, C
Kerr, MM
机构
[1] Univ Munster, Inst Math, D-48149 Munster, Germany
[2] Wellesley Coll, Dept Math, Wellesley, MA 02481 USA
关键词
D O I
10.1090/S0002-9947-05-04096-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that compact, simply connected homogeneous spaces up to dimension 11 admit homogeneous Einstein metrics.
引用
收藏
页码:1455 / 1468
页数:14
相关论文
共 50 条
[1]  
ADAMS JF, 1996, LECT EXCEPTIONAL GRO, P27276
[2]  
Aleksa N, 2005, INST PHYS CONF SER, V175, P1
[3]  
Alekseevsky D. V., 1975, FUNCTIONAL ANAL APPL, V9, DOI DOI 10.1007/BF01075445
[4]   INFINITE FAMILY OF DISTINCT 7-MANIFOLDS ADMITTING POSITIVELY CURVED RIEMANNIAN STRUCTURES [J].
ALOFF, S ;
WALLACH, NR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (01) :93-97
[5]   NEW INVARIANT EINSTEIN-METRICS ON GENERALIZED FLAG MANIFOLDS [J].
ARVANITOYEORGOS, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (02) :981-995
[6]   EQUIVARIANT GEOMETRY AND KERVAIRE SPHERES [J].
BACK, A ;
HSIANG, WY .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 304 (01) :207-227
[7]  
BESSE AL, 1948, ANN MATH, V49, P379
[8]  
Böhm C, 2004, J DIFFER GEOM, V67, P79
[9]   A variational approach for compact homogeneous Einstein manifolds [J].
Böhm, C ;
Wang, M ;
Ziller, W .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (04) :681-733
[10]   Compact 3-Sasakian 7-manifolds with arbitrary second Betti number [J].
Boyer, CP ;
Galicki, K ;
Mann, BM ;
Rees, EG .
INVENTIONES MATHEMATICAE, 1998, 131 (02) :321-344