On Finite Noncommutative Grobner Bases

被引:0
|
作者
Diop, Yatma [1 ]
Sow, Djiby [1 ]
机构
[1] Cheikh Anta Diop Univ Dakar, Dept Math & Comp Sci, Dakar, Senegal
关键词
natural maps; lexicographic extension; minimal generators; commutators;
D O I
10.1142/S1005386720000310
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that in the noncommutative polynomial ring in serveral variables Buchberger's algorithm does not always terminate. Thus, it is important to characterize noncommutative ideals that admit a finite Grobner basis. In this context, Eisenbud, Peeva and Sturmfels defined a map gamma from the noncommutative polynomial ring k < X-1, ..., X-n > to the commutative one k[x(1), ..., x(n)] and proved that any ideal J of k < X-1, ..., X-n >, written as J = gamma(-1)(I) for some ideal I of k[x(1), ..., x(n)], amits a finite Grobner basis with respect to a special monomial ordering on k < X-1, ..., X-n >. In this work, we approach the opposite problem. We prove that under some conditions, any ideal J of k < X-1, ..., X-n > admitting a finite Grobner basis can be written as J = gamma(-1)(I) for some ideal I of k[x(1), ..., x(n)].
引用
收藏
页码:381 / 388
页数:8
相关论文
共 50 条
  • [31] NOTES ON GROBNER BASES
    MISHRA, B
    YAP, C
    INFORMATION SCIENCES, 1989, 48 (03) : 219 - 252
  • [32] STABILITY OF GROBNER BASES
    SCHWARTZ, N
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1988, 53 (1-2) : 171 - 186
  • [33] GROBNER BASES - AN INTRODUCTION
    BUCHBERGER, B
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 623 : 378 - 379
  • [34] Regular Grobner bases
    Månsson, J
    Nordbeck, P
    JOURNAL OF SYMBOLIC COMPUTATION, 2002, 33 (02) : 163 - 181
  • [35] Replications with Grobner bases
    Cohen, AM
    Di Bucchianico, A
    Riccomagno, E
    MODA6 ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, 2001, : 37 - 44
  • [36] Grobner bases and standard monomial bases
    Gonciulea, N
    Lakshmibai, V
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (03): : 255 - 260
  • [37] Criteria for Finite Difference Grobner Bases of Normal Binomial Difference Ideals
    Chen, Yu-Ao
    Gao, Xiao-Shan
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'17), 2017, : 93 - 100
  • [38] An introduction to Janet bases and Grobner bases
    Castro-Jiménez, FJ
    Moreno-Frías, MA
    RING THEORY AND ALGEBRAIC GEOMETRY, 2001, 221 : 133 - 145
  • [39] GROBNER BASES FOR OPERADS
    Dotsenko, Vladimir
    Khoroshkin, Anton
    DUKE MATHEMATICAL JOURNAL, 2010, 153 (02) : 363 - 396
  • [40] Dynamical Grobner bases
    Yengui, Ihsen
    JOURNAL OF ALGEBRA, 2006, 301 (02) : 447 - 458