Direct synthesis of formic acid via CO2 hydrogenation over Cu/ZnO/Al2O3 catalyst

被引:63
|
作者
Chiang, Chao-Lung [1 ]
Lin, Kuen-Song [1 ]
Chuang, Hui-Wen [1 ]
机构
[1] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Environm Technol Res Ctr, Taoyuan 32003, Taiwan
关键词
Carbon dioxide; Hydrogenation; Formic acid; Copper-based catalyst; EXAFS; XANES; DIMETHYL ETHER SYNTHESIS; CARBON-DIOXIDE REDUCTION; METHANOL SYNTHESIS; ZINC CARBONATE; CONVERSION; WATER; CUO-ZNO-AL2O3; NANOPARTICLES; CU; DECOMPOSITION;
D O I
10.1016/j.jclepro.2017.11.229
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Cu/ZnO/Al2O3 catalysts were prepared by co-precipitation of copper, zinc, and aluminum nitrate hydrates (Cu: Zn: Al = 5:3:2, molar ratio) with 1 M NaHCO3 aqueous solution at several calcination temperatures (300, 400, and 500 degrees C) in air stream, and then reduced in H-2-containing stream for 2 h. Crystal structures and particle morphologies of 300/400/500 degrees C-calcined Cu/ZnO/Al2O3 catalysts were thoroughly investigated. Shifts of pore textural properties and surface chemical compositions between fresh and used Cu/ZnO/Al2O3 were respectively observed using nitrogen isotherms and XPS spectra. Strengths of acidic and basic active sites over calcined Cu/ZnO/Al2O3 were measured with NH3- and CO2-TPD curves. Furthermore, the Cu/ZnO/Al2O3 calcined at 300 degrees C owned the largest dispersion of active copper (D-Cu = 53.90%) and maximum degree of reduction (R-max = 60.8%), which is more favorable for HCOOH and CH3OH formations. Notably, the EXAFS spectra showed that the Cu species in catalysts have a Cu-O bonding with bond distances of 1.93-1.96 angstrom and coordination numbers of 2.25-2.47, respectively. It revealed that Cu atoms over Cu/ZnO/Al2O3 calcined at lower temperature have more unoccupied binding sites for HCOOH and CH3OH formations. In terms of catalytic performances, the highest CO2 conversion (13.1%), HCOOH selectivity (59.6%), HCOOH yield (7.6%), TON value (6.17), and TOF value (2.06) were gained at 140 degrees C and 30 bar in 5 h, respectively. The durability of Cu/ZnO/Al2O3 was 22 h in a 24-h measurement at 140 degrees C and 30 bar. The optimal rate constant (2.28 x 10(-2) min(-1)) and activation energy (21.4 kJ mol(-1)) of HCOOH formation were respectively evaluated by pseudo first-order model and Arrhenius equation with good fitting. A mechanism was also proposed for HCOOH and CH3OH formations in the cyclic CO2 hydrogenation. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1957 / 1977
页数:21
相关论文
共 50 条
  • [31] Study of CO2 Hydrogenation to Methanol over CU-V/γ-Al2O3 Catalyst
    Yiping Zhang
    Department of Chemistry
    Journal of Natural Gas Chemistry, 2007, (01) : 12 - 15
  • [32] Methanol synthesis from CO2 hydrogenation over Cu/γ-Al2O3 catalysts modified by ZnO, ZrO2 and MgO
    Ren, Hong
    Xu, Cheng-Hua
    Zhao, Hao-Yang
    Wang, Ya-Xue
    Liu, Jie
    Liu, Jian-Ying
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2015, 28 : 261 - 267
  • [33] On the Role of Hydroxyl Groups on Cu/Al2O3 in CO2 Hydrogenation
    Song, Xiwen
    Yang, Chengsheng
    Li, Xianghong
    Wang, Zhongyan
    Pei, Chunlei
    Zhao, Zhi-Jian
    Gong, Jinlong
    ACS CATALYSIS, 2022, 12 (22): : 14162 - 14172
  • [34] A study of the activated decomposition of CO2 on the Cu component of a Cu/ZnO/Al2O3 catalyst
    Elliott, AJ
    Watson, MJ
    Tabatabaei, J
    Zemichael, FW
    Waugh, KC
    CATALYSIS LETTERS, 2002, 79 (1-4) : 1 - 6
  • [35] Plasma-driven CO2 hydrogenation to CH3OH over Fe2O3/γ-Al2O3 catalyst
    Meng, Shengyan
    Wu, Liang
    Liu, Miao
    Cui, Zhaolun
    Chen, Qian
    Li, Shangkun
    Yan, Jiahui
    Wang, Li
    Wang, Xinkui
    Qian, Ji
    Guo, Hongchen
    Niu, Jinhai
    Bogaerts, Annemie
    Yi, Yanhui
    AICHE JOURNAL, 2023, 69 (10)
  • [36] Hydrogenation of CO2 on MoO3/Al2O3 and γ-Al2O3
    Kipnis, M. A.
    Samokhin, P. V.
    Galkin, R. S.
    Volnina, E. A.
    Zhilyaeva, N. A.
    KINETICS AND CATALYSIS, 2024, 65 (01) : 57 - 65
  • [37] A Study of the Activated Decomposition of CO2 on the Cu Component of a Cu/ZnO/Al2O3 Catalyst
    A.J. Elliott
    M.J. Watson
    J. Tabatabaei
    F.W. Zemichael
    K.C. Waugh
    Catalysis Letters, 2002, 79 : 1 - 6
  • [38] Preparation of high performance Cu/ZnO/Al2O3 catalyst for methanol synthesis from CO2 hydrogenation by coprecipitation-reduction
    Cao, Y
    Chen, LF
    Dai, WL
    Fan, KN
    Wu, D
    Sun, YH
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2003, 24 (07): : 1296 - 1298
  • [39] CO2 Hydrogenation on Cu/Al2O3: Role of Metal/Support Interface in Driving Activity and Selectivity of a Bifunctional Catalyst
    Lam, Erwin
    Jose Corral-Perez, Juan
    Larmier, Kim
    Noh, Gina
    Wolf, Patrick
    Comas-Vives, Aleix
    Urakawa, Atsushi
    Coperet, Christophe
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (39) : 13989 - 13996
  • [40] Critical microstructural modifications of Cu/Zn/Al2O3 catalyst during CO2 hydrogenation to methanol
    Barros, Joao L. M.
    Neto, Olavo T.
    Archanjo, Braulio S.
    Kuznetsov, Oleksii
    dos Santos, Joao B. O.
    Franchini, Carlos A.
    Corat, Evaldo J.
    Silva, Adriana M.
    CATALYSIS TODAY, 2024, 442