Direct synthesis of formic acid via CO2 hydrogenation over Cu/ZnO/Al2O3 catalyst

被引:63
|
作者
Chiang, Chao-Lung [1 ]
Lin, Kuen-Song [1 ]
Chuang, Hui-Wen [1 ]
机构
[1] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Environm Technol Res Ctr, Taoyuan 32003, Taiwan
关键词
Carbon dioxide; Hydrogenation; Formic acid; Copper-based catalyst; EXAFS; XANES; DIMETHYL ETHER SYNTHESIS; CARBON-DIOXIDE REDUCTION; METHANOL SYNTHESIS; ZINC CARBONATE; CONVERSION; WATER; CUO-ZNO-AL2O3; NANOPARTICLES; CU; DECOMPOSITION;
D O I
10.1016/j.jclepro.2017.11.229
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Cu/ZnO/Al2O3 catalysts were prepared by co-precipitation of copper, zinc, and aluminum nitrate hydrates (Cu: Zn: Al = 5:3:2, molar ratio) with 1 M NaHCO3 aqueous solution at several calcination temperatures (300, 400, and 500 degrees C) in air stream, and then reduced in H-2-containing stream for 2 h. Crystal structures and particle morphologies of 300/400/500 degrees C-calcined Cu/ZnO/Al2O3 catalysts were thoroughly investigated. Shifts of pore textural properties and surface chemical compositions between fresh and used Cu/ZnO/Al2O3 were respectively observed using nitrogen isotherms and XPS spectra. Strengths of acidic and basic active sites over calcined Cu/ZnO/Al2O3 were measured with NH3- and CO2-TPD curves. Furthermore, the Cu/ZnO/Al2O3 calcined at 300 degrees C owned the largest dispersion of active copper (D-Cu = 53.90%) and maximum degree of reduction (R-max = 60.8%), which is more favorable for HCOOH and CH3OH formations. Notably, the EXAFS spectra showed that the Cu species in catalysts have a Cu-O bonding with bond distances of 1.93-1.96 angstrom and coordination numbers of 2.25-2.47, respectively. It revealed that Cu atoms over Cu/ZnO/Al2O3 calcined at lower temperature have more unoccupied binding sites for HCOOH and CH3OH formations. In terms of catalytic performances, the highest CO2 conversion (13.1%), HCOOH selectivity (59.6%), HCOOH yield (7.6%), TON value (6.17), and TOF value (2.06) were gained at 140 degrees C and 30 bar in 5 h, respectively. The durability of Cu/ZnO/Al2O3 was 22 h in a 24-h measurement at 140 degrees C and 30 bar. The optimal rate constant (2.28 x 10(-2) min(-1)) and activation energy (21.4 kJ mol(-1)) of HCOOH formation were respectively evaluated by pseudo first-order model and Arrhenius equation with good fitting. A mechanism was also proposed for HCOOH and CH3OH formations in the cyclic CO2 hydrogenation. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1957 / 1977
页数:21
相关论文
共 50 条
  • [1] CO2 Hydrogenation with Cu/ZnO/Al2O3: A Benchmark Study
    Ruland, Holger
    Song Huiqing
    Laudenschleger, Daniel
    Stuermer, Sascha
    Schmidt, Stefan
    He Jiayue
    Kaehler, Kevin
    Muhler, Martin
    Schloegl, Robert
    CHEMCATCHEM, 2020, 12 (12) : 3216 - 3222
  • [2] NH3-Induced Challenges in CO2 Hydrogenation over the Cu/ZnO/Al2O3 Catalyst
    Bie, Xuan
    Pan, Yukun
    Wang, Xiaowei
    Zhang, Shiyu
    Hu, Jiahui
    Yang, Xiaoxiao
    Li, Qinghai
    Zhang, Yanguo
    Przekop, Robert E.
    Zhang, Yayun
    Zhou, Hui
    JACS AU, 2025,
  • [3] Development of an Efficient Methanol Production Process for Direct CO2 Hydrogenation over a Cu/ZnO/Al2O3 Catalyst
    Samimi, Fereshteh
    Rahimpour, Mohammad Reza
    Shariati, Ali
    CATALYSTS, 2017, 7 (11)
  • [4] The Activity and Stability of Promoted Cu/ZnO/Al2O3 Catalyst for CO2 Hydrogenation to Methanol
    Berahim, Nor Hafizah
    Zabidi, Noor Asmawati Mohd
    Ramli, Raihan Mahirah
    Suhaimi, Nur Amirah
    PROCESSES, 2023, 11 (03)
  • [5] Hydrogenation CO2 to formic acid over Ru supported on γ-Al2O3 nanorods
    Liu, Na
    Du, Rongjun
    Li, Wei
    ADVANCES IN TEXTILE ENGINEERING AND MATERIALS III, PTS 1 AND 2, 2013, 821-822 : 1330 - +
  • [6] Investigation on Deactivation of Cu/ZnO/Al2O3 Catalyst for CO2 Hydrogenation to Methanol
    Liang, Binglian
    Ma, Junguo
    Su, Xiong
    Yang, Chongya
    Duan, Hongmin
    Zhou, Huanwen
    Deng, Shaoliang
    Li, Lin
    Huang, Yanqiang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (21) : 9030 - 9037
  • [7] Study of CO2 hydrogenation to methanol over Cu-V/γ-Al2O3 catalyst
    Zhang, Yiping
    Fei, Jinhua
    Yu, Yingmin
    Zheng, Xiaoming
    JOURNAL OF NATURAL GAS CHEMISTRY, 2007, 16 (01): : 12 - 15
  • [8] Modifications in the Composition of CuO/ZnO/Al2O3 Catalyst for the Synthesis of Methanol by CO2 Hydrogenation
    Trifan, Bianca
    Lasobras, Javier
    Soler, Jaime
    Herguido, Javier
    Menendez, Miguel
    CATALYSTS, 2021, 11 (07)
  • [9] Direct dimethyl ether synthesis over mesoporous Cu–Al2O3 catalyst via CO hydrogenation
    Caixia Zhu
    Yuan Fang
    Zaiqi Luo
    Cheng Zhang
    Xipin Zhang
    Jie Li
    Jiangang Chen
    Li Tan
    Research on Chemical Intermediates, 2019, 45 : 5863 - 5876
  • [10] Preparation of Cu/ZnO/Al2O3 Catalyst for CO2 Hydrogenation to Methanol by CO2 Assisted Aging
    Wang Danjun
    Tao Furong
    Zhao Huahua
    Song Huanling
    Chou Lingjun
    CHINESE JOURNAL OF CATALYSIS, 2011, 32 (09) : 1452 - 1456