Direct synthesis of formic acid via CO2 hydrogenation over Cu/ZnO/Al2O3 catalyst

被引:68
作者
Chiang, Chao-Lung [1 ]
Lin, Kuen-Song [1 ]
Chuang, Hui-Wen [1 ]
机构
[1] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Environm Technol Res Ctr, Taoyuan 32003, Taiwan
关键词
Carbon dioxide; Hydrogenation; Formic acid; Copper-based catalyst; EXAFS; XANES; DIMETHYL ETHER SYNTHESIS; CARBON-DIOXIDE REDUCTION; METHANOL SYNTHESIS; ZINC CARBONATE; CONVERSION; WATER; CUO-ZNO-AL2O3; NANOPARTICLES; CU; DECOMPOSITION;
D O I
10.1016/j.jclepro.2017.11.229
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Cu/ZnO/Al2O3 catalysts were prepared by co-precipitation of copper, zinc, and aluminum nitrate hydrates (Cu: Zn: Al = 5:3:2, molar ratio) with 1 M NaHCO3 aqueous solution at several calcination temperatures (300, 400, and 500 degrees C) in air stream, and then reduced in H-2-containing stream for 2 h. Crystal structures and particle morphologies of 300/400/500 degrees C-calcined Cu/ZnO/Al2O3 catalysts were thoroughly investigated. Shifts of pore textural properties and surface chemical compositions between fresh and used Cu/ZnO/Al2O3 were respectively observed using nitrogen isotherms and XPS spectra. Strengths of acidic and basic active sites over calcined Cu/ZnO/Al2O3 were measured with NH3- and CO2-TPD curves. Furthermore, the Cu/ZnO/Al2O3 calcined at 300 degrees C owned the largest dispersion of active copper (D-Cu = 53.90%) and maximum degree of reduction (R-max = 60.8%), which is more favorable for HCOOH and CH3OH formations. Notably, the EXAFS spectra showed that the Cu species in catalysts have a Cu-O bonding with bond distances of 1.93-1.96 angstrom and coordination numbers of 2.25-2.47, respectively. It revealed that Cu atoms over Cu/ZnO/Al2O3 calcined at lower temperature have more unoccupied binding sites for HCOOH and CH3OH formations. In terms of catalytic performances, the highest CO2 conversion (13.1%), HCOOH selectivity (59.6%), HCOOH yield (7.6%), TON value (6.17), and TOF value (2.06) were gained at 140 degrees C and 30 bar in 5 h, respectively. The durability of Cu/ZnO/Al2O3 was 22 h in a 24-h measurement at 140 degrees C and 30 bar. The optimal rate constant (2.28 x 10(-2) min(-1)) and activation energy (21.4 kJ mol(-1)) of HCOOH formation were respectively evaluated by pseudo first-order model and Arrhenius equation with good fitting. A mechanism was also proposed for HCOOH and CH3OH formations in the cyclic CO2 hydrogenation. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1957 / 1977
页数:21
相关论文
共 81 条
[1]   Synthesis, Fine Structural Characterization, and CO2 Adsorption Capacity of Metal Organic Frameworks-74 [J].
Adhikari, Abhijit Krishna ;
Lin, Kuen-Song .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (04) :2709-2717
[2]   Kinetic modeling of dimethyl ether synthesis in a single step on a CuO-ZnO-Al2O3/γ-Al2O3 catalyst [J].
Aguayo, Andres T. ;
Erena, Javier ;
Mier, Diana ;
Arandes, Jose M. ;
Olazar, Martin ;
Bilbao, Javier .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (17) :5522-5530
[3]   On the microwave enhanced combustion synthesis of CuO-ZnO-Al2O3 nanocatalyst used in methanol steam reforming for fuel cell grade hydrogen production: Effect of microwave irradiation and fuel ratio [J].
Ajamein, Hossein ;
Haghighi, Mohammad .
ENERGY CONVERSION AND MANAGEMENT, 2016, 118 :231-242
[4]  
Andreasen JW, 2006, J APPL CRYSTALLOGR, V39, P209, DOI [10.1107/S0021889806003098, 10.1107/S0021889806004699]
[5]  
[Anonymous], 1998, J. Phys. Chem. Ref. Data
[6]   Dimethyl ether: A review of technologies and production challenges [J].
Azizi, Zoha ;
Rezaeimanesh, Mohsen ;
Tohidian, Tahere ;
Rahimpour, Mohammad Reza .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2014, 82 :150-172
[7]  
Behrens M, 2012, SCIENCE, V336, P893, DOI [10.1126/science.1219831, 10.1126/science.12198331]
[8]   Direct synthesis of DMC from CH3OH and CO2 over V-doped Cu-Ni/AC catalysts [J].
Bian, Jun ;
Xiao, Min ;
Wang, Shuanjin ;
Lu, Yixin ;
Meng, Yuezhong .
CATALYSIS COMMUNICATIONS, 2009, 10 (08) :1142-1145
[9]   Wall coating of a CuO/ZnO/AI2O3 methanol steam reforming catalyst for micro-channel reformers [J].
Bravo, J ;
Karim, A ;
Conant, T ;
Lopez, GP ;
Datye, A .
CHEMICAL ENGINEERING JOURNAL, 2004, 101 (1-3) :113-121
[10]   On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems [J].
Burton, Allen W. ;
Ong, Kenneth ;
Rea, Thomas ;
Chan, Ignatius Y. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2009, 117 (1-2) :75-90