Constructions of Rank Modulation Codes

被引:34
作者
Mazumdar, Arya [1 ,2 ]
Barg, Alexander [3 ,4 ,5 ]
Zemor, Gilles [6 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[3] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[4] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
[5] Russian Acad Sci, Inst Problems Informat Transmiss, Dobrushin Math Lab, Moscow 127994, Russia
[6] Bordeaux Univ, Inst Math Bordeaux UMR 5251, F-33405 Talence, France
基金
美国国家科学基金会;
关键词
Codes in permutations; flash memory; Gray map; Kendall tau distance; rank modulation; transpositions; LIMITED-MAGNITUDE ERRORS; PERMUTATION ARRAYS;
D O I
10.1109/TIT.2012.2221121
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Rank modulation is a way of encoding information to correct errors in flash memory devices as well as impulse noise in transmission lines. Modeling rank modulation involves construction of packings of the space of permutations equipped with the Kendall tau distance. As our main set of results, we present several general constructions of codes in permutations that cover a broad range of code parameters. In particular, we show a number of ways in which conventional error-correcting codes can be modified to correct errors in the Kendall space. Our constructions are nonasymptotic and afford simple encoding and decoding algorithms of essentially the same complexity as required to correct errors in the Hamming metric. As an example, from binary Bose-Chaudhuri-Hocquenghem codes, we obtain codes correcting t Kendall errors in n memory cells that support the order of n!/(log(2) n!)(t) messages, for any constant t = 1, 2, .... We give many examples of rank modulation codes with specific parameters. Turning to asymptotic analysis, we construct families of rank modulation codes that correct a number of errors that grows with n at varying rates, from Theta(n) to Theta(n(2)). One of our constructions gives rise to a family of rank modulation codes for which the tradeoff between the number of messages and the number of correctable Kendall errors approaches the optimal scaling rate.
引用
收藏
页码:1018 / 1029
页数:12
相关论文
共 50 条
  • [41] Multipermutation Codes in the Ulam Metric
    Farnoud , Farzad
    Milenkovic, Olgica
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 2754 - 2758
  • [42] On ML-Certificate Linear Constraints for Rank Modulation with Linear Programming Decoding and its Application to Compact Graphs
    Hagiwara, Manabu
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [43] LP-Decodable Multipermutation Codes
    Liu, Xishuo
    Draper, Stark C.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (04) : 1631 - 1648
  • [44] Quantum Codes as an Application of Constacyclic Codes
    Raza, Mohd Arif
    Ahmad, Mohammad Fareed
    Alahmadi, Adel
    Basaffar, Widyan
    Gupta, Manish K.
    Rehman, Nadeem ur
    Khan, Abdul Nadim
    Shoaib, Hatoon
    Sole, Patrick
    AXIOMS, 2024, 13 (10)
  • [45] Bounds on the Size of Permutation Codes With the Kendall τ-Metric
    Buzaglo, Sarit
    Etzion, Tuvi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (06) : 3241 - 3250
  • [46] Constant Composition Codes as Subcodes of Cyclic Codes
    Luo, Jinquan
    Helleseth, Tor
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (11) : 7482 - 7488
  • [47] Constructions for retransmission permutation arrays
    Jeffrey H. Dinitz
    Maura B. Paterson
    Douglas R. Stinson
    Ruizhong Wei
    Designs, Codes and Cryptography, 2012, 65 : 325 - 351
  • [48] Constructions for retransmission permutation arrays
    Dinitz, Jeffrey H.
    Paterson, Maura B.
    Stinson, Douglas R.
    Wei, Ruizhong
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 65 (03) : 325 - 351
  • [49] Two constructions of permutation arrays
    Fu, FW
    Klove, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (05) : 881 - 883
  • [50] Nonexistence of perfect permutation codes under the Kendall τ-metric
    Wang, Xiang
    Wang, Yuanjie
    Yin, Wenjuan
    Fu, Fang-Wei
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (11) : 2511 - 2531