Constructions of Rank Modulation Codes

被引:34
|
作者
Mazumdar, Arya [1 ,2 ]
Barg, Alexander [3 ,4 ,5 ]
Zemor, Gilles [6 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[3] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[4] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
[5] Russian Acad Sci, Inst Problems Informat Transmiss, Dobrushin Math Lab, Moscow 127994, Russia
[6] Bordeaux Univ, Inst Math Bordeaux UMR 5251, F-33405 Talence, France
基金
美国国家科学基金会;
关键词
Codes in permutations; flash memory; Gray map; Kendall tau distance; rank modulation; transpositions; LIMITED-MAGNITUDE ERRORS; PERMUTATION ARRAYS;
D O I
10.1109/TIT.2012.2221121
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Rank modulation is a way of encoding information to correct errors in flash memory devices as well as impulse noise in transmission lines. Modeling rank modulation involves construction of packings of the space of permutations equipped with the Kendall tau distance. As our main set of results, we present several general constructions of codes in permutations that cover a broad range of code parameters. In particular, we show a number of ways in which conventional error-correcting codes can be modified to correct errors in the Kendall space. Our constructions are nonasymptotic and afford simple encoding and decoding algorithms of essentially the same complexity as required to correct errors in the Hamming metric. As an example, from binary Bose-Chaudhuri-Hocquenghem codes, we obtain codes correcting t Kendall errors in n memory cells that support the order of n!/(log(2) n!)(t) messages, for any constant t = 1, 2, .... We give many examples of rank modulation codes with specific parameters. Turning to asymptotic analysis, we construct families of rank modulation codes that correct a number of errors that grows with n at varying rates, from Theta(n) to Theta(n(2)). One of our constructions gives rise to a family of rank modulation codes for which the tradeoff between the number of messages and the number of correctable Kendall errors approaches the optimal scaling rate.
引用
收藏
页码:1018 / 1029
页数:12
相关论文
共 50 条
  • [21] Reliability and Hardware Implementation of Rank Modulation Flash Memory
    Ma, Yanjun
    Kan, Edwin Chihchuan
    Li, Yue
    Bruck, Jehoshua
    2015 15TH NON-VOLATILE MEMORY TECHNOLOGY SYMPOSIUM (NVMTS), 2015,
  • [22] Constrained Rank Modulation Schemes
    Sala, Frederic
    Dolecek, Lara
    2013 IEEE INFORMATION THEORY WORKSHOP (ITW), 2013,
  • [23] Improved Constructions of Permutation and Multi-Permutation Codes Correcting a Burst of Stable Deletions
    Sun, Yubo
    Zhang, Yiwei
    Ge, Gennian
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (07) : 4429 - 4441
  • [24] Spatial MIMO Rank Modulation
    Nyawade, Andrew
    Akuon, Peter O.
    Xu, Hongjun
    Kalecha, Vitalis Oduol
    2019 IEEE AFRICON, 2019,
  • [25] ???????On the constructions of ZpZp2-linear generalized Hadamard codes
    Bhunia, Dipak K.
    Fernandez-Cordoba, Cristina
    Villanueva, Merce
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 83
  • [26] Local Rank Modulation for Flash Memories
    Horovitz, Michal
    Etzion, Tuvi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (03) : 1705 - 1713
  • [27] Correcting Charge-Constrained Errors in the Rank-Modulation Scheme
    Jiang, Anxiao
    Schwartz, Moshe
    Bruck, Jehoshua
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (05) : 2112 - 2120
  • [28] Rank Determination by Winner-Take-All Circuit for Rank Modulation Memory
    Kim, Mina
    Twigg, Christopher M.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2016, 63 (04) : 326 - 330
  • [29] On Z8-Linear Hadamard Codes: Rank and Classification
    Fernandez-Cordoba, Cristina
    Vela, Carlos
    Villanueva, Merce
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (02) : 970 - 982
  • [30] Rank-Modulation Rewrite Coding for Flash Memories
    Gad, Eyal En
    Yaakobi, Eitan
    Jiang, Anxiao
    Bruck, Jehoshua
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (08) : 4209 - 4226