Noncommutative Schur functions, switchboards, and Schur positivity

被引:8
作者
Blasiak, Jonah [1 ]
Fomin, Sergey [2 ]
机构
[1] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2017年 / 23卷 / 01期
基金
美国国家科学基金会;
关键词
Noncommutative Schur function; Switchboard; D graph; LLT polynomial; Schur positivity; COMBINATORIAL FORMULA; SCHUBERT POLYNOMIALS;
D O I
10.1007/s00029-016-0253-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We review and further develop a general approach to Schur positivity of symmetric functions based on the machinery of noncommutative Schur functions. This approach unifies ideas of Assaf, Lam, and Greene and the second author.
引用
收藏
页码:727 / 766
页数:40
相关论文
共 36 条
[1]  
[Anonymous], 1999, Enumerative Combinatorics
[2]  
[Anonymous], 1981, Noncommutative Structures in Algebra and Geometric Combinatorics (Naples, 1978)
[3]  
Assaf S.H., 2013, ARXIV10053759V5
[4]  
Assaf S.H., 2014, PREPRINT
[5]   DUAL EQUIVALENCE GRAPHS I: A NEW PARADIGM FOR SCHUR POSITIVITY [J].
Assaf, Sami H. .
FORUM OF MATHEMATICS SIGMA, 2015, 3
[6]  
Blasiak J., ARXIV151000644
[7]  
Blasiak J, 2016, J ALGEBR COMB, V44, P677, DOI 10.1007/s10801-016-0685-7
[8]   Haglund's conjecture on 3-column Macdonald polynomials [J].
Blasiak, Jonah .
MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (1-2) :601-628
[9]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[10]   SPLITTING THE SQUARE OF A SCHUR FUNCTION INTO ITS SYMMETRICAL AND ANTISYMMETRIC PARTS [J].
CARRE, C ;
LECLERC, B .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1995, 4 (03) :201-231