An Improved Method Based on the Density and K-means Nearest Neighbor Text Clustering Algorithm

被引:0
|
作者
Fan, Xiaojing [1 ]
Jiang, Mingyang [2 ]
Pei, Zhili [2 ]
Qiao, Shicheng [2 ]
Lian, Jie [2 ]
Wang, Chaoyong [3 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Mech & Engn, Tongliao, Peoples R China
[2] Inner Mongolia Univ Nationalities, Coll Comp Sci & Technol, Tongliao, Peoples R China
[3] Jilin Teachers Inst Engn & Technol, Changchun 130052, Peoples R China
来源
2ND INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY FOR EDUCATION (ICTE 2015) | 2015年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For k-means algorithm to the initial cluster centers sensitive to outliers shortcomings, we propose a density-based method to improve the k-means algorithm. Density-based methods are used, by setting the neighborhood and the neighborhood of the object that contains at least to exclude isolated point, and will not repeat the core point as the initial cluster centers We use the ratio of the distance between the distance and class within the class as a criterion evaluation function, the number of clusters to obtain the minimum value of the criterion function as the best number of clusters. These improvements effectively overcome the shortcomings of K-means algorithm. Finally, a few examples of the improved algorithm introduces specific application examples show that the improved algorithm has a higher accuracy than the original clustering algorithm, can help achieve tight class within the class room away from the clustering effect.
引用
收藏
页码:312 / 315
页数:4
相关论文
共 50 条
  • [41] Load Forecasting Based on Improved K-means Clustering Algorithm
    Wang Yanbo
    Liu Li
    Pang Xinfu
    Fan Enpeng
    2018 CHINA INTERNATIONAL CONFERENCE ON ELECTRICITY DISTRIBUTION (CICED), 2018, : 2751 - 2755
  • [42] Video Classification Based On the Improved K-Means Clustering Algorithm
    Peng, Taile
    Zhang, Zhen
    Shen, Ke
    Jiang, Tao
    2019 5TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION, 2020, 440
  • [43] Improved K-means clustering algorithm based on user tag
    Tang J.
    Journal of Convergence Information Technology, 2010, 5 (10) : 124 - 130
  • [44] A multilevel k-nearest neighbour learning algorithm based on k-means clustering
    Ying, Xu
    2007 International Symposium on Computer Science & Technology, Proceedings, 2007, : 250 - 253
  • [45] An Improved K-means Clustering Algorithm Based on Normal Matrix
    Tian Shengwen
    Zhao Yongsheng
    Wang Yilei
    PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON TEST AUTOMATION AND INSTRUMENTATION, VOL 4, 2008, : 2182 - 2185
  • [46] Based On K-Means and Nearest Neighbor Algorithm for Fuzzy System Used for Data Fitting
    Hu, Yi
    Han, Jixia
    Dian, Songyi
    3RD INTERNATIONAL CONFERENCE ON AUTOMATION, CONTROL AND ROBOTICS ENGINEERING (CACRE 2018), 2018, 428
  • [47] An Improved K-means Algorithm for Document Clustering
    Wu, Guohua
    Lin, Hairong
    Fu, Ershuai
    Wang, Liuyang
    2015 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND MECHANICAL AUTOMATION (CSMA), 2015, : 65 - 69
  • [48] An Improved K-Means Clustering Algorithm Based on Semantic Model
    Liu, Zhe
    Bao, Jianmin
    Ding, Fei
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING 2018 (ICITEE '18), 2018,
  • [49] An improved K-means clustering algorithm based on normal matrix
    School of Compute Science and Technology, Ludong University, Yantai 264025, China
    Int. Symp. Test Autom. Instrum., ISTAI, (2182-2185):
  • [50] Clustering of college students based on improved K-means algorithm
    Fan Z.
    Sun Y.
    Luo H.
    Journal of Computers (Taiwan), 2017, 28 (06) : 195 - 203