A multilinear unsupervised discriminant projections method for feature extraction

被引:3
作者
Chen, Haiyan [1 ,2 ]
Qian, Chengshan [3 ]
Zheng, Hao [2 ]
Wang, Huan [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Xiaozhuang Univ, Key Lab Trusted Cloud Comp & Big Data Anal, Nanjing 211171, Jiangsu, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Jiangsu, Peoples R China
关键词
UDP; Tensor; Multilinear; Feature extraction; Face recognition; PRINCIPAL COMPONENT ANALYSIS; FACE-RECOGNITION; DIMENSIONALITY REDUCTION; 2-DIMENSIONAL PCA; REPRESENTATION; SAMPLE; LDA; EIGENFACES; ALGORITHM; FRAMEWORK;
D O I
10.1007/s11042-016-4243-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Despite considering the distribution information of data, unsupervised discriminant projection (UDP) ignores the space structure information of data for high order tensor objects. To address these problems, many tensor methods are developed for charactering the space structure information. Albeit effective, these methods ignore the local manifold structure of the samples, and thus achieve sub-optimal performance. In this paper, we formulate UDP in a high order tensor space and develop a Multilinear UDP (MUDP) for feature extraction on tensor objects. MUDP inherits the merits of UDP and Tensor based methods. The experiments tell that MUDP is an efficient and effective method and works well.
引用
收藏
页码:3857 / 3870
页数:14
相关论文
共 55 条
  • [31] General tensor discriminant analysis and Gabor features for gait recognition
    Tao, Dacheng
    Li, Xuelong
    Wu, Xindong
    Maybank, Stephen J.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (10) : 1700 - 1715
  • [32] A global geometric framework for nonlinear dimensionality reduction
    Tenenbaum, JB
    de Silva, V
    Langford, JC
    [J]. SCIENCE, 2000, 290 (5500) : 2319 - +
  • [33] EIGENFACES FOR RECOGNITION
    TURK, M
    PENTLAND, A
    [J]. JOURNAL OF COGNITIVE NEUROSCIENCE, 1991, 3 (01) : 71 - 86
  • [34] Vapnik V.N., 2000, The nature of statistical learning theory
  • [35] Rapid object detection using a boosted cascade of simple features
    Viola, P
    Jones, M
    [J]. 2001 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2001, : 511 - 518
  • [36] Implementing Smart Factory of Industrie 4.0: An Outlook
    Wang, Shiyong
    Wan, Jiafu
    Li, Di
    Zhang, Chunhua
    [J]. INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2016,
  • [37] A rapid learning algorithm for vehicle classification
    Wen, Xuezhi
    Shao, Ling
    Xue, Yu
    Fang, Wei
    [J]. INFORMATION SCIENCES, 2015, 295 : 395 - 406
  • [38] Graph embedding and extensions: A general framework for dimensionality reduction
    Yan, Shuicheng
    Xu, Dong
    Zhang, Benyu
    Zhang, Hong-Jiang
    Yang, Qiang
    Lin, Stephen
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (01) : 40 - 51
  • [39] Yang H, 2003, PATTERN RECOGN, V36, P563, DOI 10.1016/S0031-3203(02)00048-1
  • [40] Two-dimensional PCA: A new approach to appearance-based face representation and recognition
    Yang, J
    Zhang, D
    Frangi, AF
    Yang, JY
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (01) : 131 - 137