A multilinear unsupervised discriminant projections method for feature extraction

被引:3
作者
Chen, Haiyan [1 ,2 ]
Qian, Chengshan [3 ]
Zheng, Hao [2 ]
Wang, Huan [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Xiaozhuang Univ, Key Lab Trusted Cloud Comp & Big Data Anal, Nanjing 211171, Jiangsu, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Jiangsu, Peoples R China
关键词
UDP; Tensor; Multilinear; Feature extraction; Face recognition; PRINCIPAL COMPONENT ANALYSIS; FACE-RECOGNITION; DIMENSIONALITY REDUCTION; 2-DIMENSIONAL PCA; REPRESENTATION; SAMPLE; LDA; EIGENFACES; ALGORITHM; FRAMEWORK;
D O I
10.1007/s11042-016-4243-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Despite considering the distribution information of data, unsupervised discriminant projection (UDP) ignores the space structure information of data for high order tensor objects. To address these problems, many tensor methods are developed for charactering the space structure information. Albeit effective, these methods ignore the local manifold structure of the samples, and thus achieve sub-optimal performance. In this paper, we formulate UDP in a high order tensor space and develop a Multilinear UDP (MUDP) for feature extraction on tensor objects. MUDP inherits the merits of UDP and Tensor based methods. The experiments tell that MUDP is an efficient and effective method and works well.
引用
收藏
页码:3857 / 3870
页数:14
相关论文
共 55 条
  • [1] [Anonymous], 2007, CVPR
  • [2] [Anonymous], SOFT COMPUT
  • [3] [Anonymous], 2005, ADV NEURAL INFORM PR
  • [4] [Anonymous], KNOWLEDGE INFORM SYS
  • [5] [Anonymous], IEEE T NEURAL NETW L, DOI [10.1109/TNNLS.2016.2527796, DOI 10.1109/TNNLS.2016.2527796]
  • [6] Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection
    Belhumeur, PN
    Hespanha, JP
    Kriegman, DJ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) : 711 - 720
  • [7] Laplacian eigenmaps for dimensionality reduction and data representation
    Belkin, M
    Niyogi, P
    [J]. NEURAL COMPUTATION, 2003, 15 (06) : 1373 - 1396
  • [8] A new LDA-based face recognition system which can solve the small sample size problem
    Chen, LF
    Liao, HYM
    Ko, MT
    Lin, JC
    Yu, GJ
    [J]. PATTERN RECOGNITION, 2000, 33 (10) : 1713 - 1726
  • [9] Incremental Support Vector Learning for Ordinal Regression
    Gu, Bin
    Sheng, Victor S.
    Tay, Keng Yeow
    Romano, Walter
    Li, Shuo
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (07) : 1403 - 1416
  • [10] FLEXIBLE DISCRIMINANT-ANALYSIS BY OPTIMAL SCORING
    HASTIE, T
    TIBSHIRANI, R
    BUJA, A
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (428) : 1255 - 1270