The impact of bed-net use on malaria prevalence

被引:90
作者
Agusto, Folashade B. [1 ]
Del Valle, Sara Y. [2 ]
Blayneh, Kbenesh W. [3 ]
Ngonghala, Calistus N. [4 ]
Goncalves, Maria J. [5 ]
Li, Nianpeng [6 ]
Zhao, Ruijun [7 ]
Gong, Hongfei [8 ]
机构
[1] Austin Peay State Univ, Dept Math & Stat, Clarksville, TN 37044 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Florida A&M Univ, Dept Math, Tallahassee, FL 32307 USA
[4] UT Knoxville, Natl Inst Math & Biol Synth, Knoxville, TN 37996 USA
[5] Univ Fed Amazonas, Escola Enfermagem Manaus, BR-69057070 Manaus, Amazonas, Brazil
[6] Howard Univ, Dept Math, Washington, DC 20059 USA
[7] Minnesota State Univ, Dept Math & Stat, Mankato, MN 56001 USA
[8] Oxitec Ltd, Abingdon OX14 4RX, Oxon, England
基金
美国国家科学基金会;
关键词
Human behavior; Backward bifurcation; Mathematical epidemiology; MATHEMATICAL-MODEL; TRANSMISSION; DELTAMETHRIN; BIFURCATIONS; CURTAINS;
D O I
10.1016/j.jtbi.2012.12.007
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Malaria infection continues to be a major problem in many parts of the world including the Americas, Asia, and Africa. Insecticide-treated bed-nets have shown to reduce malaria cases by 50%; however, improper handling and human behavior can diminish their effectiveness. We formulate and analyze a mathematical model that considers the transmission dynamics of malaria infection in mosquito and human populations and investigate the impact of bed-nets on its control. The effective reproduction number is derived and existence of backward bifurcation is presented. The backward bifurcation implies that the reduction of R below unity alone is not enough to eradicate malaria, except when the initial cases of infection in both populations are small. Our analysis demonstrate that bed-net usage has a positive impact in reducing the reproduction number R. The results show that if 75% of the population were to use bed-nets, malaria could be eliminated. We conclude that more data on the impact of human and mosquito behavior on malaria spread is needed to develop more realistic models and better predictions. Published by Elsevier Ltd.
引用
收藏
页码:58 / 65
页数:8
相关论文
共 24 条
  • [1] THEORETICAL ASSESSMENT OF AVIAN INFLUENZA VACCINE
    Agusto, Folashade B.
    Gumel, Abba B.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 13 (01): : 1 - 25
  • [2] Modeling HIV/AIDS and Tuberculosis Coinfection
    Bhunu, C. P.
    Garira, W.
    Mukandavire, Z.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2009, 71 (07) : 1745 - 1780
  • [3] OPTIMAL CONTROL OF VECTOR-BORNE DISEASES: TREATMENT AND PREVENTION
    Blayneh, Kbenesh
    Cao, Yanzhao
    Kwon, Hee-Dae
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (03): : 587 - 611
  • [4] Backward Bifurcation and Optimal Control in Transmission Dynamics of West Nile Virus
    Blayneh, Kbenesh W.
    Gumel, Abba B.
    Lenhart, Suzanne
    Clayton, Tim
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2010, 72 (04) : 1006 - 1028
  • [5] A mathematical model for assessing control strategies against West Nile virus
    Bowman, C
    Gumel, AB
    van den Driessche, P
    Wu, J
    Zhu, H
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2005, 67 (05) : 1107 - 1133
  • [6] Castillo-Chavez C., 2002, MATH APPROACHES EMER
  • [7] Comparing the Effectiveness of Malaria Vector-Control Interventions Through a Mathematical Model
    Chitnis, Nakul
    Schapira, Allan
    Smith, Thomas
    Steketee, Richard
    [J]. AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2010, 83 (02) : 230 - 240
  • [8] Effects of behavioral changes in a smallpox attack model
    Del Valle, S
    Hethcote, H
    Hyman, JM
    Castillo-Chavez, C
    [J]. MATHEMATICAL BIOSCIENCES, 2005, 195 (02) : 228 - 251
  • [9] Backwards bifurcations and catastrophe in simple models of fatal diseases
    Dushoff, J
    Huang, WZ
    Castillo-Chavez, C
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1998, 36 (03) : 227 - 248
  • [10] Backward bifurcations in dengue transmission dynamics
    Garba, S. M.
    Gumel, A. B.
    Abu Bakar, M. R.
    [J]. MATHEMATICAL BIOSCIENCES, 2008, 215 (01) : 11 - 25