Event Detection Using Trajectory Clustering and 4-D Histograms

被引:27
|
作者
Jung, Claudio Rosito [1 ]
Hennemann, Luciano [1 ]
Musse, Soraia Raupp [2 ]
机构
[1] Univ Vale Rio dos Sinos, BR-93022000 Sao Leopoldo, RS, Brazil
[2] Pontificia Univ Catolica Rio Grande do Sul, Porto Alegre, RS, Brazil
关键词
Classification; event detection; histograms; mixtures of Gaussians (MoGs); surveillance; unusual motion;
D O I
10.1109/TCSVT.2008.2005600
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a framework for event detection based on trajectory clustering and 4-D histograms. In the training period, captured trajectories are grouped into coherent clusters according to global motion flows. Within each cluster, the position and instantaneous velocity of each tracked object are used to build a 4-D motion histogram for the cluster. In the test period, each new trajectory is compared against the 4-D histograms of all clusters, so that its coherence with previously tracked objects can be evaluated. Experimental results showed that these criteria can be effectively used to measure the coherence of test trajectories with those in the training stage, allowing a range of events to be detected in surveillance and traffic applications.
引用
收藏
页码:1565 / 1575
页数:11
相关论文
共 50 条
  • [1] VISUAL EVENT DETECTION USING ORIENTATION HISTOGRAMS WITH FEATURE POINT TRAJECTORY INFORMATION
    Pong, Hon-Keat
    Xue, Ping
    Tian, Qi
    ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 342 - 345
  • [2] Multivariate Trajectory Clustering for False Positive Reduction in Online Event Detection
    McKenna, Sean A.
    Vugrin, Eric D.
    Hart, David B.
    Aumer, Robert
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE, 2013, 139 (01): : 3 - 12
  • [3] Dangerous driving behavior detection using video-extracted vehicle trajectory histograms
    Chen, Zhijun
    Wu, Chaozhong
    Huang, Zhen
    Lyu, Nengchao
    Hu, Zhaozheng
    Zhong, Ming
    Cheng, Yang
    Ran, Bin
    JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2017, 21 (05) : 409 - 421
  • [4] Abnormal event detection based on trajectory clustering by 2-depth greedy search
    Jiang, Fan
    Wu, Ying
    Katsaggelos, Aggelos K.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 2129 - 2132
  • [5] A Dynamic Hierarchical Clustering Method for Trajectory-Based Unusual Video Event Detection
    Jiang, Fan
    Wu, Ying
    Katsaggelos, Aggelos K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (04) : 907 - 913
  • [6] COHERENT EVENT-BASED SURVEILLANCE VIDEO SYNOPSIS USING TRAJECTORY CLUSTERING
    Chou, Chien-Li
    Lin, Chin-Hsien
    Chiang, Tzu-Hsuan
    Chen, Hua-Tsung
    Lee, Suh-Yin
    2015 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2015,
  • [7] mmFall: Fall Detection Using 4-D mmWave Radar and a Hybrid Variational RNN AutoEncoder
    Jin, Feng
    Sengupta, Arindam
    Cao, Siyang
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (02) : 1245 - 1257
  • [8] Event detection in finance using hierarchical clustering algorithms on news and tweets
    Carta, Salvatore
    Consoli, Sergio
    Piras, Luca
    Podda, Alessandro Sebastian
    Recupero, Diego Reforgiato
    PEERJ COMPUTER SCIENCE, 2021,
  • [9] Event Detection in Finance Using Hierarchical Clustering Algorithms on News and Tweets
    Carta S.
    Consoli S.
    Piras L.
    Podda A.S.
    Recupero D.R.
    PeerJ Computer Science, 2021, 7 : 1 - 39
  • [10] Lane Detection by Trajectory Clustering in Urban Environments
    Chen, Zezhi
    Yan, Yuyao
    Ellis, Tim
    2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2014, : 3076 - 3081