STABILITY OF NONLINEAR NEUTRAL MIXED TYPE LIVEN-NOHEL INTEGRO-DIFFERENTIAL EQUATIONS

被引:0
作者
Bessioud, Karima [1 ]
Ardjouni, Abdelouaheb [1 ]
Djoudi, Ahcene [2 ]
机构
[1] Univ Souk Ahras, Dept Math & Informat, POB 1553, Souk Ahras, Algeria
[2] Univ Annaba, Dept Math, POB 12, Annaba, Algeria
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2022年 / 46卷 / 05期
关键词
Asymptotic stability; contraction mapping theorem; neutral integro-differential equations; mixed type; FUNCTIONAL-DIFFERENTIAL EQUATIONS; FIXED-POINTS; ASYMPTOTIC-BEHAVIOR; THEOREM;
D O I
10.46793/KgJMat2205.721B
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use the contraction mapping theorem to obtain as-ymptotic stability results about the zero solution for a nonlinear neutral mixed type Levin-Nohel integro-differential equation. An asymptotic stability theorem with a necessary and sufficient condition is proved. An example is also given to illustrate our main results.
引用
收藏
页码:721 / 732
页数:12
相关论文
共 28 条
[1]  
[Anonymous], 2001, NONLINEAR STUD
[2]  
[Anonymous], 2003, Fixed point theory
[3]   Stability in nonlinear neutral integro-differential equations with variable delay using fixed point theory [J].
Ardjouni A. ;
Djoudi A. .
Journal of Applied Mathematics and Computing, 2014, 44 (1-2) :317-336
[4]   FIXED POINTS AND STABILITY IN NEUTRAL NONLINEAR DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS [J].
Ardjouni, Abdelouaheb ;
Djoudi, Ahcene .
OPUSCULA MATHEMATICA, 2012, 32 (01) :5-19
[5]  
Ardjouni A, 2012, ELECTRON J DIFFER EQ
[6]   Stability, fixed points and inverses of delays [J].
Becker, LC ;
Burton, TA .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 :245-275
[7]   Asymptotic stability in nonlinear neutral Levin-Nohel integro-differential equations [J].
Bessioud K. ;
Ardjouni A. ;
Djoudi A. .
Journal of Nonlinear Functional Analysis, 2017, 2017
[8]   On the Asymptotic Behavior of Solutions of Neutral Mixed Type Differential Equations [J].
Bicer, Emel .
RESULTS IN MATHEMATICS, 2018, 73 (04)
[9]  
Burton T. A., 2006, Stability by Fixed Point Theory for Functional Differential Equations
[10]   Fixed points and stability of a nonconvolution equation [J].
Burton, TA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (12) :3679-3687