Construction of second-order orthogonal sliced Latin hypercube designs

被引:13
作者
Cao, Rui-Yuan
Liu, Min-Qian [1 ]
机构
[1] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Computer experiment; Correlation; Second-order orthogonality; Space-filling; COMPUTER EXPERIMENTS;
D O I
10.1016/j.jco.2015.02.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Sliced Latin hypercube designs are useful for computer experiments with qualitative and quantitative factors, model calibration, cross validation, multi-level function estimation, stochastic optimization and data pooling. Orthogonality and second-order orthogonality are crucial in identifying important inputs. Besides orthogonality, good space-filling properties are also necessary for Latin hypercube designs. In this paper, a construction method for second-order orthogonal sliced Latin hypercube designs is proposed. The constructed designs are further optimized to achieve better space-filling properties. Furthermore, the method is extended to construct nearly orthogonal sliced Latin hypercube designs. The numbers of slices and columns as well as the levels of the resulting designs are more flexible than those obtained by existing methods. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:762 / 772
页数:11
相关论文
共 50 条
[31]   Sliced symmetrical Latin hypercube designs [J].
Wang, Xiaodi ;
Chen, Xueping ;
Lin, Dennis K. J. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 218 :59-72
[32]   Construction of orthogonal-MaxPro Latin hypercube designs [J].
Wang, Yaping ;
Liu, Sixu ;
Xiao, Qian .
JOURNAL OF QUALITY TECHNOLOGY, 2024, 56 (04) :342-354
[33]   Resolvable orthogonal array-based uniform sliced Latin hypercube designs [J].
Yang, Xue ;
Chen, Hao ;
Liu, Min-Qian .
STATISTICS & PROBABILITY LETTERS, 2014, 93 :108-115
[34]   A CONSTRUCTION METHOD FOR ORTHOGONAL LATIN HYPERCUBE DESIGNS WITH PRIME POWER LEVELS [J].
Pang, Fang ;
Liu, Min-Qian ;
Lin, Dennis K. J. .
STATISTICA SINICA, 2009, 19 (04) :1721-1728
[35]   CONTROLLING CORRELATIONS IN SLICED LATIN HYPERCUBE DESIGNS [J].
Chen, Jiajie ;
Qian, Peter .
STATISTICA SINICA, 2018, 28 (02) :839-851
[36]   Sliced Latin hypercube designs with both branching and nested factors [J].
Chen, Hao ;
Yang, Jinyu ;
Lin, Dennis K. J. ;
Liu, Min-Qian .
STATISTICS & PROBABILITY LETTERS, 2019, 146 :124-131
[37]   Orthogonal Latin hypercube designs from generalized orthogonal designs [J].
Georgiou, Stelios D. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (04) :1530-1540
[38]   BI-DIRECTIONAL SLICED LATIN HYPERCUBE DESIGNS [J].
Zhou, Qiang ;
Jin, Tian ;
Qian, Peter Z. G. ;
Zhou, Shiyu .
STATISTICA SINICA, 2016, 26 (02) :653-674
[39]   Optimal Sliced Latin Hypercube Designs with Slices of Arbitrary Run Sizes [J].
Zhang, Jing ;
Xu, Jin ;
Jia, Kai ;
Yin, Yimin ;
Wang, Zhengming .
MATHEMATICS, 2019, 7 (09)
[40]   Construction of Improved Branching Latin Hypercube Designs [J].
Chen, Hao ;
Yang, Jinyu ;
Liu, Min-Qian .
ACTA MATHEMATICA SCIENTIA, 2021, 41 (04) :1023-1033