Construction of second-order orthogonal sliced Latin hypercube designs

被引:13
作者
Cao, Rui-Yuan
Liu, Min-Qian [1 ]
机构
[1] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Computer experiment; Correlation; Second-order orthogonality; Space-filling; COMPUTER EXPERIMENTS;
D O I
10.1016/j.jco.2015.02.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Sliced Latin hypercube designs are useful for computer experiments with qualitative and quantitative factors, model calibration, cross validation, multi-level function estimation, stochastic optimization and data pooling. Orthogonality and second-order orthogonality are crucial in identifying important inputs. Besides orthogonality, good space-filling properties are also necessary for Latin hypercube designs. In this paper, a construction method for second-order orthogonal sliced Latin hypercube designs is proposed. The constructed designs are further optimized to achieve better space-filling properties. Furthermore, the method is extended to construct nearly orthogonal sliced Latin hypercube designs. The numbers of slices and columns as well as the levels of the resulting designs are more flexible than those obtained by existing methods. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:762 / 772
页数:11
相关论文
共 50 条
  • [21] On the construction of nested orthogonal Latin hypercube designs
    Sukanta Dash
    Baidya Nath Mandal
    Rajender Parsad
    Metrika, 2020, 83 : 347 - 353
  • [22] Construction of nearly orthogonal Latin hypercube designs
    Efthimiou, Ifigenia
    Georgiou, Stelios D.
    Liu, Min-Qian
    METRIKA, 2015, 78 (01) : 45 - 57
  • [23] On the construction of nested orthogonal Latin hypercube designs
    Dash, Sukanta
    Mandal, Baidya Nath
    Parsad, Rajender
    METRIKA, 2020, 83 (03) : 347 - 353
  • [24] A Note on the Construction of Orthogonal Latin Hypercube Designs
    Dey, Aloke
    Sarkar, Deepayan
    JOURNAL OF COMBINATORIAL DESIGNS, 2016, 24 (03) : 105 - 111
  • [25] Construction of nearly orthogonal Latin hypercube designs
    Ifigenia Efthimiou
    Stelios D. Georgiou
    Min-Qian Liu
    Metrika, 2015, 78 : 45 - 57
  • [26] A construction method for orthogonal Latin hypercube designs
    Steinberg, David M.
    Lin, Dennis K. J.
    BIOMETRIKA, 2006, 93 (02) : 279 - 288
  • [27] Construction of orthogonal Latin hypercube designs with flexible run sizes
    Sun, Fasheng
    Liu, Min-Qian
    Lin, Dennis K. J.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3236 - 3242
  • [28] Nested Latin Hypercube Designs with Sliced Structures
    Chen, Hao
    Liu, Min-Qian
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (22) : 4721 - 4733
  • [29] GENERAL SLICED LATIN HYPERCUBE DESIGNS
    Xie, Huizhi
    Xiong, Shifeng
    Qian, Peter Z. G.
    Wu, C. F. Jeff
    STATISTICA SINICA, 2014, 24 (03) : 1239 - 1256
  • [30] Sliced symmetrical Latin hypercube designs
    Wang, Xiaodi
    Chen, Xueping
    Lin, Dennis K. J.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 218 : 59 - 72