Structure and dynamics of stereo-regular poly(methyl-methacrylate) melts through atomistic molecular dynamics simulations

被引:25
作者
Behbahani, Alireza F. [1 ,2 ]
Allaei, S. Mehdi Vaez [3 ]
Motlagh, Ghodratollah H. [1 ]
Eslami, Hossein [4 ]
Harmandaris, Vagelis A. [5 ,6 ]
机构
[1] Univ Tehran, Sch Chem Engn, Coll Engn, Adv Polymer Mat & Proc Lab, Tehran 111554563, Iran
[2] Inst Res Fundamental Sci IPM, Sch Phys, Tehran 193955531, Iran
[3] Univ Tehran, Dept Phys, Tehran 14395547, Iran
[4] Persian Gulf Univ, Dept Chem, Coll Sci, Boushehr 75168, Iran
[5] Univ Crete, Dept Math & Appl Math, GR-71110 Iraklion, Greece
[6] Fdn Res & Technol Hellas, Inst Appl & Computat Math, GR-71110 Iraklion, Greece
关键词
SYNDIOTACTIC POLY(METHYL METHACRYLATE); GLASS-TRANSITION TEMPERATURE; MEAN-SQUARE RADIUS; OLIGO(METHYL METHACRYLATE)S; FUNCTIONALIZED GRAPHENE; BETA-RELAXATION; LOCAL-STRUCTURE; TACTICITY; WEIGHT; PARAMETERS;
D O I
10.1039/c7sm02008b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Poly(methyl-methacrylate), PMMA, is a disubstituted vinyl polymer whose properties depend significantly on its tacticity. Here we present a detailed study of the structure, conformation, and dynamics of syndiotactic, atactic, and isotactic PMMA melts at various temperatures (580, 550, 520, and 490 K) via all-atom molecular dynamics simulations. The calculated volumetric properties are close to experimental data. The T-g and chain dimensions of PMMA model systems are found to depend strongly on tacticity in agreement with experimental findings. The backbone bonds in trans (t), diads in tt, and inter-diads in t vertical bar t torsional states are the most populated for all PMMA stereo-chemistries and their fractions increase with the number of syndiotactic sequences. Also, the effective torsional barrier heights for the backbone, ester side group, and alpha-methyl group are larger for syndiotactic PMMA compared to the isotactic one. The structure of the PMMA chains is studied by computing the intra- and inter-chain static structure factors, S(q), and the radial pair distribution functions. In the first peak of S(q), both intra- and inter-chain components contribute, whereas the second and third peaks mainly come from inter- and intra-chain parts, respectively. For all PMMA stereo-isomers a clear tendency of ester-methyl groups to aggregate is observed. The local dynamics are studied by analyzing torsional autocorrelation functions for various dihedral angles. A wide spectrum of correlation times and different activation energies are observed for the motions of different parts of PMMA chains. The stereo-chemistry affects the backbone, ester side group, and alpha-methyl motions, whereas the ester-methyl rotation remains unaffected. The dynamic heterogeneity of the PMMA chains is also studied in detail for the different stereo-chemistries via the temperature dependence of the stretching exponent. Furthermore, the reorientational dynamics at the chain level and translational dynamics for monomer and chain centers-of-mass are analyzed.
引用
收藏
页码:1449 / 1464
页数:16
相关论文
共 55 条
[1]   Edge-Functionalized Graphene as a Nanofiller: Molecular Dynamics Simulation Study [J].
Bacova, Petra ;
Rissanou, Anastassia N. ;
Harmandaris, Vagelis .
MACROMOLECULES, 2015, 48 (24) :9024-9038
[2]   Nanophase separation and hindered glass transition in side-chain polymers [J].
Beiner, M ;
Huth, H .
NATURE MATERIALS, 2003, 2 (09) :595-599
[3]   Molecular-dynamics simulation of a glassy polymer melt: Rouse model and cage effect [J].
Bennemann, C ;
Baschnagel, J ;
Paul, W ;
Binder, K .
COMPUTATIONAL AND THEORETICAL POLYMER SCIENCE, 1999, 9 (3-4) :217-226
[4]   The merging of the dielectric α- and β-relaxations in poly(methyl methacrylate) [J].
Bergman, R ;
Alvarez, F ;
Alegría, A ;
Colmenero, J .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (17) :7546-7555
[5]  
Boyd Richard., 2007, Polymer dynamics and relaxation
[6]   GLASS-TRANSITION ON LONG-TIME SCALES [J].
BRUNING, R ;
SAMWER, K .
PHYSICAL REVIEW B, 1992, 46 (18) :11318-11322
[7]   Cooling rate dependence of the glass transition temperature of polymer melts: Molecular dynamics study [J].
Buchholz, J ;
Paul, W ;
Varnik, F ;
Binder, K .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (15) :7364-7372
[8]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[9]   Temperature Dependence of the Johari-Goldstein Relaxation in Poly(methyl methacrylate) and Poly(thiomethyl methacrylate) [J].
Casalini, R. ;
Snow, A. W. ;
Roland, C. M. .
MACROMOLECULES, 2013, 46 (01) :330-334
[10]   Aging of a low molecular weight poly(methyl methacrylate) [J].
Casalini, R. ;
Roland, C. M. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2011, 357 (02) :282-285