A novel model for graphene-based ion-sensitive field-effect transistor

被引:5
作者
El-Grour, Tarek [1 ]
Najari, Montasar [1 ,2 ]
El-Mir, Lassaad [1 ,3 ]
机构
[1] Gabes Univ, LAPHYMNE Lab, Gabes, Tunisia
[2] Jazan Univ, IKCE Unit, Jazan, Saudi Arabia
[3] Al Imam Mohammad Ibn Saud Islamic Univ, Riyadh, Saudi Arabia
关键词
Graphene field-effect transistors; pH sensor; Sensitivity; Compact modeling; Simulation; DOUBLE-LAYER; MOBILITY;
D O I
10.1007/s10825-017-1068-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graphene field-effect transistors (GFETs) are a promising candidate for sensing applications because of their high charge carrier mobility, high flexibility, biocompatibility and the ideal coupling between graphene charge carriers and surface potential. Coating graphene with sensing membrane fabricated high-k materials that can be used to pH sensing in aqueous solutions. This work presents the development of an analytical model for GFET-based pH sensor. This model can help in the investigation of the sensitivity mechanism related to the ambipolar characteristic of the GFET and theory of site binding and a Gouy-Chapman-Stern model. Finally, simulation results are compared with those extracted from experimental measurements and a good agreement is observed which validates the proposed analytical model.
引用
收藏
页码:297 / 303
页数:7
相关论文
共 25 条
[1]   Solution-Gated Epitaxial Graphene as pH Sensor [J].
Ang, Priscilla Kailian ;
Chen, Wei ;
Wee, Andrew Thye Shen ;
Loh, Kian Ping .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (44) :14392-+
[2]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[3]   Al2O3/Silicon NanoISFET with Near Ideal Nernstian Response [J].
Chen, Songyue ;
Bomer, Johan G. ;
Carlen, Edwin T. ;
van den Berg, Albert .
NANO LETTERS, 2011, 11 (06) :2334-2341
[4]   High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization [J].
Fu, W. ;
Nef, C. ;
Tarasov, A. ;
Wipf, M. ;
Stoop, R. ;
Knopfmacher, O. ;
Weiss, M. ;
Calame, M. ;
Schoenenberger, C. .
NANOSCALE, 2013, 5 (24) :12104-12110
[5]   Graphene Transistors Are Insensitive to pH Changes in Solution [J].
Fu, Wangyang ;
Nef, Cornelia ;
Knopfrnacher, Oren ;
Tarasov, Alexey ;
Weiss, Markus ;
Calame, Michel ;
Schoenenberger, Christian .
NANO LETTERS, 2011, 11 (09) :3597-3600
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   Influence of Electrolyte Composition on Liquid-Gated Carbon Nanotube and Graphene Transistors [J].
Heller, Iddo ;
Chatoor, Sohail ;
Mannik, Jaan ;
Zevenbergen, Marcel A. G. ;
Dekker, Cees ;
Lemay, Serge G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (48) :17149-17156
[8]   Label-free detection of alanine aminotransferase using a graphene field-effect biosensor [J].
Her, Jim-Long ;
Pan, Tung-Ming ;
Lin, Wan-Ying ;
Wang, Kai-Sheng ;
Li, Lain-Jong .
SENSORS AND ACTUATORS B-CHEMICAL, 2013, 182 :396-400
[9]   Fabrication of High Performance Ion-Sensitive Field-Effect Transistors Using an Engineered Sensing Membrane for Bio-Sensor Application [J].
Jang, Hyun-June ;
Cho, Won-Ju .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (02)
[10]   A Simple Semiempirical Short-Channel MOSFET Current-Voltage Model Continuous Across All Regions of Operation and Employing Only Physical Parameters [J].
Khakifirooz, Ali ;
Nayfeh, Osama M. ;
Antoniadis, Dimitri .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (08) :1674-1680