Evolutionary optimization of thermo-physical properties of MWCNT-Fe3O4/water hybrid nanofluid using least-squares support vector regression-based models

被引:8
作者
Hassan, Muhammed A. [1 ]
Hassan, Mohamed Abubakr [4 ]
Banerjee, Debjyoti [2 ]
Hegab, Hussien [3 ]
机构
[1] Cairo Univ, Fac Engn, Mech Power Engn Dept, Giza 12613, Egypt
[2] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
[3] United Arab Emirates Univ, Coll Engn, Dept Mech & Aerosp Engn, Al Ain 15551, U Arab Emirates
[4] Cairo Univ, Fac Engn, Mech Design & Prod Engn Dept, Giza 12613, Egypt
关键词
Hybrid nanofluid; Thermo -physical properties; Support vector regression; Genetic optimization; ARTIFICIAL NEURAL-NETWORK; WALLED CARBON NANOTUBES; THERMOPHYSICAL PROPERTIES; CONDUCTIVITY ENHANCEMENT; RHEOLOGICAL BEHAVIOR; AQUEOUS NANOFLUIDS; GENETIC ALGORITHM; BROWNIAN-MOTION; SOLAR-RADIATION; HEAT CAPACITY;
D O I
10.1016/j.asoc.2022.109644
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Decisions on optimizing design and operating parameters are challenging when using hybrid nanofluids (HNFs). A procedure is proposed and implemented for predicting and optimizing the thermal conductivity and dynamic viscosity of MWCNT-Fe3O4/water HNF. The procedure involves using precise least-squares support vector regression (LSSVR) models, multi-objective genetic optimization of thermal properties, and automated selection of optimal design conditions. Tuned parameters are the volume fractions of nanoparticles and the operating temperature. The cross-validated and carefully optimized LSSVR models for thermal conductivity and dynamic viscosity showed excellent performances, with testing mean percentage errors of -0.246 and -0.103%, and relative root mean square errors of 1.325 and 2.165%, respectively. By assigning equal importance to the two response
引用
收藏
页数:17
相关论文
共 78 条
  • [1] An adaptive design for cost, quality and productivity-oriented sustainable machining of stainless steel 316
    Abbas, Adel T.
    Abubakr, Mohamed
    Hassan, Muhammed A.
    Luqman, Monis
    Soliman, Mahmoud S.
    Hegab, Hussien
    [J]. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2020, 9 (06): : 14568 - 14581
  • [2] Abubakr M., 2022, HDB CARBON NANOTUB, P1, DOI [10.1007/978-3-319-70614-6_32-2, DOI 10.1007/978-3-319-70614-6_32-2]
  • [3] Preparation, characterization, and analysis of multi-walled carbon nanotube-based nanofluid: an aggregate based interpretation
    Abubakr, Mohamed
    Osman, Tarek A.
    Kishawy, Hossam A.
    Elharouni, Farida
    Hegab, Hussien
    Esawi, Amal M. K.
    [J]. RSC ADVANCES, 2021, 11 (41) : 25561 - 25574
  • [4] Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/Water-ethylene glycol hybrid nanofluid
    Akhgar, Alireza
    Toghraie, Davood
    Sina, Nima
    Afrand, Masoud
    [J]. POWDER TECHNOLOGY, 2019, 355 : 602 - 610
  • [5] Modeling the viscosity of nanofluids using artificial neural network and Bayesian support vector regression
    Alade, Ibrahim Olanrewaju
    Abd Rahman, Mohd Amiruddin
    Hassan, Amjed
    Saleh, Tawfik A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2020, 128 (08)
  • [6] Application of support vector regression and artificial neural network for prediction of specific heat capacity of aqueous nanofluids of copper oxide
    Alade, Ibrahim Olanrewaju
    Abd Rahman, Mohd Amiruddin
    Abbas, Zulkifly
    Yaakob, Yazid
    Saleh, Tawfik A.
    [J]. SOLAR ENERGY, 2020, 197 : 485 - 490
  • [7] Modeling and optimization of thermal conductivity and viscosity of MnFe2O4 nanofluid under magnetic field using an ANN
    Amani, Mohammad
    Amani, Pouria
    Kasaeian, Alibakhsh
    Mahian, Omid
    Pop, Ioan
    Wongwises, Somchai
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [8] Multi-objective optimization of thermophysical properties of eco-friendly organic nanofluids
    Amani, Mohammad
    Amani, Pouria
    Mahian, Omid
    Estelle, Patrice
    [J]. JOURNAL OF CLEANER PRODUCTION, 2017, 166 : 350 - 359
  • [9] Artificial Neural Network Methods for the Solution of Second Order Boundary Value Problems
    Anitescu, Cosmin
    Atroshchenko, Elena
    Alajlan, Naif
    Rabczuk, Timon
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 59 (01): : 345 - 359
  • [10] EFFECTS OF THE PRECOLUMN IN AUTOMATED ON-COLUMN INJECTION CAPILLARY GAS-CHROMATOGRAPHY
    ARRENDALE, RF
    STEWART, JT
    MARTIN, RM
    [J]. JOURNAL OF CHROMATOGRAPHY, 1990, 518 (02): : 307 - 318