Quantum memories and error correction

被引:26
作者
Wootton, James R. [1 ]
机构
[1] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland
关键词
quantum memories; quantum error correction; quantum information; quantum computation; ABELIAN ANYONS; COMPUTATION; COMMUNICATION; ENTANGLEMENT; DECOHERENCE; REPEATERS; SCHEME; CODES; STATE;
D O I
10.1080/09500340.2012.737937
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum states are inherently fragile, making their storage a major concern for many practical applications and experimental tests of quantum mechanics. The field of quantum memories is concerned with how this storage may be achieved, covering everything from the physical systems best suited to the task to the abstract methods that may be used to increase performance. This review concerns itself with the latter, giving an overview of error correction and self-correction, and how they may be used to achieve fault-tolerant quantum computation. The planar code is presented as a concrete example, both as a quantum memory and as a framework for quantum computation.
引用
收藏
页码:1717 / 1738
页数:22
相关论文
共 123 条
[1]  
Al-Shimary A., 2012, ARXIV12092940
[2]   A statistical mechanics view on Kitaev's proposal for quantum memories [J].
Alicki, R. ;
Fannes, M. ;
Horodecki, M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) :6451-6467
[3]   On thermalization in Kitaev's 2D model [J].
Alicki, R. ;
Fannes, M. ;
Horodecki, M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (06)
[4]   Nonbinary quantum stabilizer codes [J].
Ashikhmin, A ;
Knill, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :3065-3072
[5]   EXPERIMENTAL TESTS OF REALISTIC LOCAL THEORIES VIA BELLS THEOREM [J].
ASPECT, A ;
GRANGIER, P ;
ROGER, G .
PHYSICAL REVIEW LETTERS, 1981, 47 (07) :460-463
[6]   Operator quantum error-correcting subsystems for self-correcting quantum memories [J].
Bacon, D .
PHYSICAL REVIEW A, 2006, 73 (01)
[7]  
Bell J. S., 1964, Physics, V1, P195, DOI [10.1103/physicsphysiquefizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
[8]  
Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[9]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[10]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725