Continuous-discontinuous formulation for ductile fracture

被引:22
作者
Ramos Seabra, Mariana Rita [1 ]
Cesar de Sa, Jose M. A. [1 ]
Andrade, Filipe X. C. [1 ]
Pires, Francisco F. M. A. [1 ]
机构
[1] Univ Porto, IDMEC Inst Mech Engn, Fac Engn, P-4200465 Oporto, Portugal
关键词
XFEM; Damage; Fracture; FINITE-ELEMENT-METHOD; CRACK-GROWTH; DAMAGE MODEL; STRAIN PROBLEMS; LEVEL SETS; ENRICHMENT;
D O I
10.1007/s12289-010-0991-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this contribution, a continuum-discontinuum model for ductile failure is presented. The degradation of material properties through deformation is described by a Continuum Damage Mechanics model, which uses a non-local integral formulation to avoid mesh dependence. In the final stage of failure, the damaged zone is replaced by a macro crack for a more realistic representation of the phenomenon. The inclusion of the discontinuity surfaces is performed by the XFEM and Level Set Method to avoid the spurious damage growth typical of this class of models.
引用
收藏
页码:271 / 281
页数:11
相关论文
共 30 条
[1]   IMPROVEMENT OF THE NUMERICAL PREDICTION OF DUCTILE FAILURE WITH AN INTEGRAL NONLOCAL DAMAGE MODEL [J].
Andrade, F. X. C. ;
Andrade Pires, F. M. ;
Cesar de Sa, J. M. A. ;
Malcher, L. .
INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2009, 2 :439-442
[2]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
[3]  
2-S
[4]   A thermodynamic method for the construction of a cohesive law from a nonlocal damage model [J].
Cazes, Fabien ;
Coret, Michel ;
Combescure, Alain ;
Gravouil, Anthony .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (06) :1476-1490
[5]  
Crisfield M.A., 1991, Non-linear Finite Element Analysis of Solids and Structures
[6]   Damage modelling in metal forming problems using an implicit non-local gradient model [J].
de Sa, J. M. A. Cesar ;
Areias, P. M. A. ;
Zheng, Cai .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (48-49) :6646-6660
[7]   Quadrilateral elements for the solution of elasto-plastic finite strain problems [J].
de Sá, JMAC ;
Areias, PMA ;
Jorge, RMN .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 51 (08) :883-917
[8]   Discontinuous enrichment in finite elements with a partition of unity method [J].
Dolbow, J ;
Moës, N ;
Belytschko, T .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2000, 36 (3-4) :235-260
[9]   Enrichment of enhanced assumed strain approximations for representing strong discontinuities: addressing volumetric incompressibility and the discontinuous patch test [J].
Dolbow, JE ;
Devan, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 59 (01) :47-67
[10]  
Hinton E., 1977, FINITE ELEMENT PROGR