Gene Expression Network Reconstruction by LEP Method Using Microarray Data

被引:0
|
作者
You, Na [1 ]
Mou, Peng [1 ]
Qiu, Ting [1 ]
Kou, Qiang [1 ]
Zhu, Huaijin [1 ]
Chen, Yuexi [1 ]
Wang, Xueqin [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
来源
关键词
SELECTION; INFERENCE; LASSO; MODEL;
D O I
10.1100/2012/753430
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gene expression network reconstruction using microarray data is widely studied aiming to investigate the behavior of a gene cluster simultaneously. Under the Gaussian assumption, the conditional dependence between genes in the network is fully described by the partial correlation coefficient matrix. Due to the high dimensionality and sparsity, we utilize the LEP method to estimate it in this paper. Compared to the existing methods, the LEP reaches the highest PPV with the sensitivity controlled at the satisfactory level. A set of gene expression data from the HapMap project is analyzed for illustration.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Reconstruction of gene co-expression network from microarray data using local expression patterns
    Swarup Roy
    Dhruba K Bhattacharyya
    Jugal K Kalita
    BMC Bioinformatics, 15
  • [2] Reconstruction of gene co-expression network from microarray data using local expression patterns
    Roy, Swarup
    Bhattacharyya, Dhruba K.
    Kalita, Jugal K.
    BMC BIOINFORMATICS, 2014, 15 : 1 - 14
  • [3] Gene network reconstruction from microarray data
    Florence Jaffrezic
    Gwenola Tosser-Klopp
    BMC Proceedings, 3 (Suppl 4)
  • [4] The application of gene co-expression network reconstruction based on CNVs and gene expression microarray data in breast cancer
    Xu, Yan
    DuanMu, Huizi
    Chang, Zhiqiang
    Zhang, Shanzhen
    Li, Zhenqi
    Li, Zihui
    Liu, Yufeng
    Li, Kening
    Qiu, Fujun
    Li, Xia
    MOLECULAR BIOLOGY REPORTS, 2012, 39 (02) : 1627 - 1637
  • [5] The application of gene co-expression network reconstruction based on CNVs and gene expression microarray data in breast cancer
    Yan Xu
    Huizi DuanMu
    Zhiqiang Chang
    Shanzhen Zhang
    Zhenqi Li
    Zihui Li
    Yufeng Liu
    Kening Li
    Fujun Qiu
    Xia Li
    Molecular Biology Reports, 2012, 39 : 1627 - 1637
  • [6] Triclustering Discovery Using the δ-Trimax Method on Microarray Gene Expression Data
    Siswantining, Titin
    Saputra, Noval
    Sarwinda, Devvi
    Al-Ash, Herley Shaori
    SYMMETRY-BASEL, 2021, 13 (03):
  • [7] Review on statistical methods for gene network reconstruction using expression data
    Wang, Y. X. Rachel
    Huang, Haiyan
    JOURNAL OF THEORETICAL BIOLOGY, 2014, 362 : 53 - 61
  • [8] New Gene Selection Method Using Gene Expression Programing Approach on Microarray Data Sets
    Alanni, Russul
    Hou, Jingyu
    Azzawi, Hasseeb
    Xiang, Yong
    COMPUTER AND INFORMATION SCIENCE (ICIS 2018), 2019, 791 : 17 - 31
  • [9] An Integrative Tool for Gene Regulatory Network Reconstruction Based on Microarray Data
    Ou, J. W.
    Tang, C. Y.
    Chen, R. M.
    Hu, R. M.
    Tsai, Jeffrey J. P.
    2009 9TH IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING, 2009, : 467 - 470
  • [10] A MICROARRAY GENE EXPRESSION DATA CLASSIFICATION USING HYBRID BACK PROPAGATION NEURAL NETWORK
    Vimaladevi, M.
    Kalaavathi, B.
    GENETIKA-BELGRADE, 2014, 46 (03): : 1013 - 1026