MORE ON THE TWO-POINT OSTROWSKI INEQUALITY

被引:4
|
作者
Matic, Marko [1 ]
Ungar, Sime [2 ]
机构
[1] Univ Split, FESB, Dept Math, Split, Croatia
[2] Univ Zagreb, Dept Math, Zagreb 41000, Croatia
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2009年 / 3卷 / 03期
关键词
Integral inequality; two-point Ostrowski; p-norm;
D O I
10.7153/jmi-03-41
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We improve the previous results of [7] on the L-p - version of an inequality similar to the two-point Ostrowski inequality of Matic and Pecaric [3].
引用
收藏
页码:417 / 426
页数:10
相关论文
共 25 条
  • [1] ON THE TWO-POINT OSTROWSKI INEQUALITY
    Pecaric, Josip
    Ungar, Sime
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (02): : 339 - 347
  • [2] An integral analogue of the Ostrowski inequality
    Pearce, CEM
    Pecaric, J
    Varosanec, S
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 1998, 2 (03) : 275 - 283
  • [3] ON FUNCTIONAL GENERALIZATION OF OSTROWSKI INEQUALITY FOR CONFORMABLE FRACTIONAL INTEGRALS
    Tunc, T.
    Budak, H.
    Sarikaya, M. Z.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2018, 8 (02): : 495 - 508
  • [4] An Ostrowski Type Inequality for Twice Differentiable Mappings and Applications
    Erden, Samet
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    MATHEMATICAL MODELLING AND ANALYSIS, 2016, 21 (04) : 522 - 532
  • [5] A new Ostrowski-Gruss inequality involving 3n knots
    Vu Nhat Huy
    Quoc-Anh Ngo
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 235 : 272 - 282
  • [6] Ostrowski-Type Inequalities for Functions of Two Variables in Banach Spaces
    Latif, Muhammad Amer
    Almutairi, Ohud Bulayhan
    MATHEMATICS, 2024, 12 (17)
  • [7] A COMPANION OF GENERALIZATION OF OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS OF TWO VARIABLES WITH BOUNDED VARIATION
    Budak, H.
    Sarikaya, M. Z.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2016, 15 (03) : 297 - 312
  • [8] A PARAMETER-BASED OSTROWSKI TYPE INEQUALITY FOR FUNCTIONS WHOSE DERIVATIVES BELONGS TO Lp([a, b]) INVOLVING MULTIPLE POINTS
    Kermausuor, Seth
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2023, 47 (03): : 445 - 458
  • [9] On a more accurate Hardy-Mulholland-type inequality
    Yang, Bicheng
    Chen, Qiang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [10] Integral inequalities of Ostrowski type for two kinds of s-logarithmically convex functions
    Xi, Bo-Yan
    Wang, Shu-Hong
    Qi, Feng
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (06) : 1063 - 1071