Enhanced Classification of Individual Finger Movements with ECoG

被引:0
|
作者
Yao, Lin [1 ]
Shoaran, Mahsa [1 ]
机构
[1] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA
关键词
Brain-machine interface (BMI); ECoG; finger movement classification; temporal dynamics; machine learning; ELECTROCORTICOGRAPHIC SIGNALS; MOTOR IMAGERY;
D O I
10.1109/ieeeconf44664.2019.9048649
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motor decoding at the level of individual finger movements is critical for high-performance brain-machine interface (BMI) applications. In this work, we propose to exploit the temporal dynamics of the multi-channel electrocorticography (ECoG) signal from human subjects and modern machine learning algorithms to improve the finger-level movement classification accuracy. Using a decision tree ensemble as the classifier and the temporally-concatenated features of ECoG as input, we achieved an average classification accuracy of 71.3%+/- 7.1% on 3 subjects, 6.3% better than the state-of-the-art approach based on conditional random fields (CRF) on the same dataset. Our proposed method could enable a high-performance and minimally invasive cortical BMI for paralyzed patients.
引用
收藏
页码:2063 / 2066
页数:4
相关论文
共 50 条
  • [41] Asynchronous decoding of finger movements from ECoG signals using long-range dependencies conditional random fields
    Delgado Saa, Jaime F.
    De Pesters, Adriana
    Cetin, Mujdat
    JOURNAL OF NEURAL ENGINEERING, 2016, 13 (03)
  • [42] Electrocorticographic (ECoG) correlates of human arm movements
    Anderson, Nicholas R.
    Blakely, Tim
    Schalk, Gerwin
    Leuthardt, Eric C.
    Moran, Daniel W.
    EXPERIMENTAL BRAIN RESEARCH, 2012, 223 (01) : 1 - 10
  • [43] Electrocorticographic (ECoG) correlates of human arm movements
    Nicholas R. Anderson
    Tim Blakely
    Gerwin Schalk
    Eric C. Leuthardt
    Daniel W. Moran
    Experimental Brain Research, 2012, 223 : 1 - 10
  • [44] Classification of Individual Finger Motions Hybridizing Electromyogram in Transient and Converged States
    Kondo, Genta
    Kato, Ryu
    Yokoi, Hiroshi
    Arai, Tamio
    2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, : 2909 - 2915
  • [45] Individual Finger Classification from Surface EMG: Influence of electrode set
    Celadon, Nicolo
    Dosen, Strahinja
    Paleari, Marco
    Farina, Dario
    Ariano, Paolo
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 7284 - 7287
  • [46] Classification of Individual and Combined Finger Flexions Using Machine Learning Approaches
    Hristov, Blagoj
    Nadzinski, Gorjan
    Latkoska, Vesna Ojleska
    Zlatinov, Stefan
    2022 IEEE 17TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION, ICCA, 2022, : 986 - 991
  • [47] Classification of contralateral and ipsilateral finger movements for electrocorticographic brain-computer interfaces
    Scherer, Reinhold
    Zanos, Stavros P.
    Miller, Kai J.
    Rao, Rajesh P. N.
    Ojemann, Jeffrey G.
    NEUROSURGICAL FOCUS, 2009, 27 (01)
  • [48] Classification of finger movements with an intracortical brain-computer interface in a human brain
    Jorge, Ahmed
    Royston, Dylan
    Tyler-Kabara, Elizabeth
    Boninger, Michael
    Collinger, Jennifer
    JOURNAL OF NEUROSURGERY, 2018, 128 (04) : 5 - 5
  • [49] SVM for Classification of Ten-Finger Imagined Movements using tEEG Signals
    Barbosa, Rafael Da Luz
    Adhikari, Kaushallya
    Besio, Walter G.
    2024 IEEE 5TH ANNUAL WORLD AI IOT CONGRESS, AIIOT 2024, 2024, : 0557 - 0561
  • [50] Classification of single MEG trials related to left and right index finger movements
    Kauhanen, L
    Nykopp, T
    Sams, M
    CLINICAL NEUROPHYSIOLOGY, 2006, 117 (02) : 430 - 439