Enhanced Water Photolysis with Pt Metal Nanoparticles on Single Crystal TiO2 Surfaces

被引:49
作者
An, Woo-Jin [2 ]
Wang, Wei-Ning [2 ]
Ramalingam, Balavinayagam [1 ]
Mukherjee, Somik [1 ]
Daubayev, Batyrbek [2 ]
Gangopadhyay, Shubhra [1 ]
Biswas, Pratim [2 ]
机构
[1] Univ Missouri, Dept Elect & Comp Engn, Columbia, MO 65211 USA
[2] Washington Univ, Dept Energy Environm & Chem Engn, Aerosol & Air Qual Res Lab, St Louis, MO 63130 USA
基金
美国国家科学基金会;
关键词
PHOTOCATALYTIC ACTIVITY; NANOTUBE ARRAYS; FILMS; DEPOSITION; GROWTH; VAPOR;
D O I
10.1021/la3008377
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two novel deposition methods were used to synthesize Pt-TiO2 composite photoelectrodes: a tilt-target room temperature sputtering method and aerosol-chemical vapor deposition (ACVD). Pt nanoparticles (NPs) were sequentially deposited by the tilt-target room temperature sputtering method onto the as-synthesized nanostructured columnar TiO2 films by ACVD. By varying the sputtering time of Pt deposition, the size of deposited Pt NPs on the TiO2 film could be precisely controlled. The as-synthesized composite photoelectrodes with different sizes of Pt NPs were characterized by various methods, such as SEM, EDS, TEM, XRD, and UV-vis. The photocurrent measurements revealed that the modification of the TiO2 surface with Pt NPs improved the photoelectrochemical properties of electrodes. Performance of the Pt-TiO2 composite photoelectrodes with sparsely deposited 1.15 nm Pt NPs was compared to the pristine TiO2 photoelectrode with higher saturated photocurrents (7.92 mA/cm(2) to 9.49 mA/cm(2)), enhanced photoconversion efficiency (16.2% to 21.2%), and increased fill factor (0.66 to 0.70). For larger size Pt NPs of 3.45 nm, the composite photoelectrode produced a lower photocurrent and reduced conversion efficiency compared to the pristine TiO2 electrode. However, the surface modification by Pt NPs helped the composite electrode maintain higher fill factor values.
引用
收藏
页码:7528 / 7534
页数:7
相关论文
共 44 条
[21]   Electrospray-assisted characterization and deposition of chlorosomes to fabricate a biomimetic light-harvesting device [J].
Modesto-Lopez, Luis B. ;
Thimsen, Elijah J. ;
Collins, Aaron M. ;
Blankenship, Robert E. ;
Biswas, Pratim .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (02) :216-222
[22]   p-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation [J].
Mor, Gopal K. ;
Varghese, Oomman K. ;
Wilke, Rudeger H. T. ;
Sharma, Sanjeev ;
Shankar, Karthik ;
Latempa, Thomas J. ;
Choi, Kyoung-Shin ;
Grimes, Craig A. .
NANO LETTERS, 2008, 8 (07) :1906-1911
[23]   STRUCTURES AND FUNCTIONS OF THIN METAL LAYERS ON SEMICONDUCTOR ELECTRODES [J].
NAKATO, Y ;
TSUBOMURA, H .
JOURNAL OF PHOTOCHEMISTRY, 1985, 29 (1-2) :257-266
[24]   PHOTO-ELECTROCHEMICAL BEHAVIORS OF SEMICONDUCTOR ELECTRODES COATED WITH THIN METAL-FILMS [J].
NAKATO, Y ;
OHNISHI, T ;
TSUBOMURA, H .
CHEMISTRY LETTERS, 1975, (08) :883-886
[25]   Functionalized Silicate Sol-Gel-Supported TiO2-Au Core-Shell Nanomaterials and Their Photoelectrocatalytic Activity [J].
Pandikumar, Alagarsamy ;
Murugesan, Sepperumal ;
Ramaraj, Ramasamy .
ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (07) :1912-1917
[26]  
Paracchino A, 2011, NAT MATER, V10, P456, DOI [10.1038/nmat3017, 10.1038/NMAT3017]
[27]   Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays [J].
Paulose, M ;
Mor, GK ;
Varghese, OK ;
Shankar, K ;
Grimes, CA .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2006, 178 (01) :8-15
[28]   Platinum Nanoparticle Decorated Silicon Nanowires for Efficient Solar Energy Conversion [J].
Peng, Kui-Qing ;
Wang, Xin ;
Wu, Xiao-Ling ;
Lee, Shuit-Tong .
NANO LETTERS, 2009, 9 (11) :3704-3709
[29]   CHARGE CARRIER TRAPPING AND RECOMBINATION DYNAMICS IN SMALL SEMICONDUCTOR PARTICLES [J].
ROTHENBERGER, G ;
MOSER, J ;
GRATZEL, M ;
SERPONE, N ;
SHARMA, DK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (26) :8054-8059
[30]   Role of photoinduced charge carrier separation distance in heterogeneous photocatalysis: Oxidative degradation of CH3OH vapor in contact with Pt/TiO2 and cofumed TiO2-Fe2O3 [J].
Sadeghi, M ;
Liu, W ;
Zhang, TG ;
Stavropoulos, P ;
Levy, B .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (50) :19466-19474