GAUSSIAN LOWER BOUNDS FOR THE BOLTZMANN EQUATION WITHOUT CUTOFF

被引:17
作者
Imbert, Cyril [1 ,2 ]
Mouhot, Clement [3 ]
Silvestre, Luis [4 ]
机构
[1] CNRS, 45 Rue Ulm, F-75005 Paris, France
[2] Ecole Normale Super Paris, Dept Math & Applicat, 45 Rue Ulm, F-75005 Paris, France
[3] Univ Cambridge, DPMMS, Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WA, England
[4] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Boltzmann equation; lower bound; noncutoff; long-range interactions; conditional regularity; maximum principle; GLOBAL EXISTENCE; ANGULAR CUTOFF; EQUILIBRIUM;
D O I
10.1137/19M1252375
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study of positivity of solutions to the Boltzmann equation goes back to [T. Carleman, Acta Math., 60 (1933), pp. 91-146], and the initial argument of Carleman was developed in [A. Pulvirenti and B. Wennberg, Comm. Math. Phys., 183 (1997), pp. 145-160; C. Mouhot, Comm. Partial Differential Equations, 30 (2005), pp. 881-917; M. Briant, Arch. Ration. Mech. Anal., 218 (2015), pp. 985-1041; M. Briant, Kinet. Relat. Models, 8 (2015), pp. 281-308] but the appearance of a lower bound with Gaussian decay had remained an open question for long-range interactions (the so-called noncutoff collision kernels). We answer this question and establish such a Gaussian lower bound for solutions to the Boltzmann equation without cutoff, in the case of hard and moderately soft potentials, with spatial periodic conditions, and under the sole assumption that hydrodynamic quantities (local mass, local energy, and local entropy density) remain bounded. The paper is mostly self-contained, apart from the L-infinity upper bound and weak Harnack inequality on the solution established, respectively in [L. Silvestre, Comm. Math. Phys., 348 (2016), pp. 69-100; C. Imbert, C. Mouhot, and L. Silvestre, J. Ec. polytech. Math., 7 (2020), pp. 143-184.; C. Imbert and L. Silvestre, J. Eur. Math. Soc. (JEMS), 22 (2020), pp. 507-592].
引用
收藏
页码:2930 / 2944
页数:15
相关论文
共 30 条
[1]   Strong L1 convergence to equilibrium without entropy conditions for the Boltzmann equation [J].
Abrahamsson, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (7-8) :1501-1535
[2]   Entropy dissipation and long-range interactions [J].
Alexandre, R ;
Desvillettes, L ;
Villani, C ;
Wennberg, B .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 152 (04) :327-355
[3]   The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (03) :915-1010
[4]   Global Existence and Full Regularity of the Boltzmann Equation Without Angular Cutoff [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 304 (02) :513-581
[5]   THE BOLTZMANN EQUATION WITHOUT ANGULAR CUTOFF IN THE WHOLE SPACE: II, GLOBAL EXISTENCE FOR HARD POTENTIAL [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C-J ;
Yang, T. .
ANALYSIS AND APPLICATIONS, 2011, 9 (02) :113-134
[6]   On the Boltzmann equation for long-range interactions [J].
Alexandre, R ;
Villani, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (01) :30-70
[7]   UNIQUENESS OF SOLUTIONS FOR THE NON-CUTOFF BOLTZMANN EQUATION WITH SOFT POTENTIAL [J].
Alexandre, Radjesvarane ;
Morimoto, Yoshinori ;
Ukai, Seiji ;
Xu, Chao-Jiang ;
Yang, Tong .
KINETIC AND RELATED MODELS, 2011, 4 (04) :919-934
[8]  
[Anonymous], 1872, SITZUNGSBER AKAD WIS
[9]   Second-order elliptic integro-differential equations: viscosity solutions' theory revisited [J].
Barles, B. ;
Imbert, Cyril .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (03) :567-585
[10]   Instantaneous Filling of the Vacuum for the Full Boltzmann Equation in Convex Domains [J].
Briant, M. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (02) :985-1041