Heat shock protein 27 downregulates the transferrin receptor 1-mediated iron uptake

被引:74
作者
Chen, Huaiyong
Zheng, Chunlei
Zhang, Yong
Chang, Yan-Zhong
Qian, Zhong-Ming [1 ]
Shen, Xun
机构
[1] Chinese Acad Sci, Grad Sch, Inst Biophys, Beijing 100101, Peoples R China
[2] Hebei Normal Univ, Inst Mol Neurobiol & Neuropharmacol, Shijiazhuang 050016, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
heat shock protein 27; transferrin receptor-mediated iron uptake; transferrin recycling; iron regulatory protein; actin polymerization;
D O I
10.1016/j.biocel.2006.02.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
It has been reported that over-expression of human heat shock protein 27 (hsp27) in murine cells decreased the intracellular iron level [Arrigo, A. P., Virot, S., Chaufour, S., Firdaus, W., Kretz-Remy, C., & Diaz-Latoud, C. (2005). Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxidants & Redox Signalling, 7, 412-422]. However, the mechanism involved is unknown. In this study, the regulation of transferrin receptor 1 (TfR1)-mediated iron uptake by human hsp27 was investigated in CCL39 cells by overexpression of human hsp27 and its dominant-negative mutant (hsp27-3G). The results showed that overexpression of hsp27 diminished intracellular labile iron pool, increased the binding activity of iron regulatory protein (IRP) to iron responsive element (IRE) and the cell surface-expressed TfR1s. However, the increased surface-expressed TfR1s resulted in decrease rather than increase of iron uptake. Further study revealed that overexpression of hsp27 decelerated transferrin endocytosis and recycling, while overexpressed hsp27-3G had a reversal,effect. Moreover, flowcytometric analysis showed an enhanced actin polymerization in the cells overexpressing hsp27. In particular, fluorescence imaging of cytoskeleton displayed highly stabilized microfilaments and preferential localization of hsp27 in cortical area of the actin cytoskeleton. In contrast, disruption of actin cytoskeleton by cytochalasin B resulted in acceleration of the endocytosis and recycling of Tf, as well as increase of iron uptake. Meanwhile, the possible involvement of ferroportin 1 in downregulation of intracellular iron level by overexpression of hsp27 was checked. However, the outcome was negative. Our findings indicated that hsp27 down-regulates TfR1-mediated iron uptake via stabilization of the cortical actin cytoskeleton rather than the classical IRP/IRE mode. The study may also imply that hsp27 protects cells from oxidative stress by reducing cellular iron uptake. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1402 / 1416
页数:15
相关论文
共 58 条
[1]   A novel mammalian iron-regulated protein involved in intracellular iron metabolism [J].
Abboud, S ;
Haile, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (26) :19906-19912
[2]   Iron metabolism [J].
Aisen, P ;
Wessling-Resnick, M ;
Leibold, EA .
CURRENT OPINION IN CHEMICAL BIOLOGY, 1999, 3 (02) :200-206
[3]   Hsp27: Novel regulator of intracellular redox state [J].
Arrigo, AP .
IUBMB LIFE, 2001, 52 (06) :303-307
[4]   Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels [J].
Arrigo, AP ;
Virot, S ;
Chaufour, S ;
Firdaus, W ;
Kretz-Remy, C ;
Diaz-Latoud, C .
ANTIOXIDANTS & REDOX SIGNALING, 2005, 7 (3-4) :414-424
[5]  
Bayerl C, 1999, EUR J DERMATOL, V9, P281
[6]  
Candussio L., 1999, Journal of Submicroscopic Cytology and Pathology, V31, P477
[7]   MULTIPLE GTP-BINDING PROTEINS PARTICIPATE IN CLATHRIN-COATED VESICLE-MEDIATED ENDOCYTOSIS [J].
CARTER, LL ;
REDELMEIER, TE ;
WOOLLENWEBER, LA ;
SCHMID, SL .
JOURNAL OF CELL BIOLOGY, 1993, 120 (01) :37-45
[8]   Actin cytoskeleton and exocytosis in rat melanotrophs [J].
Chowdhury, HH ;
Popoff, MR ;
Zorec, R .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2000, 439 (03) :R148-R149
[9]   Fluorescence analysis of the labile iron pool of mammalian cells [J].
Epsztejn, S ;
Kakhlon, O ;
Glickstein, H ;
Breuer, W ;
Cabantchik, ZI .
ANALYTICAL BIOCHEMISTRY, 1997, 248 (01) :31-40
[10]   Nramp2 is mutated in the anemic Belgrade (b) rat:: Evidence of a role for Nramp2 in endosomal iron transport [J].
Fleming, MD ;
Romano, MA ;
Su, MA ;
Garrick, LM ;
Garrick, MD ;
Andrews, NC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (03) :1148-1153