On the yield stress of complex materials

被引:17
|
作者
Calderas, F. [1 ]
Herrera-Valencia, E. E. [1 ]
Sanchez-Solis, A. [1 ]
Manero, O. [1 ]
Medina-Torres, L. [2 ]
Renteria, A. [2 ]
Sanchez-Olivares, G. [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Invest Mat, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Dept Ingn Quim, Fac Quim, Mexico City 04510, DF, Mexico
[3] CIATEC AC, Dept Mat, Guanajuato 37545, Mexico
关键词
Bautista-Manero-Puig model (BMP); yield Stress; rheological modeling; complex Fluids; CONSTITUTIVE EQUATION; BINGHAM FLUIDS; FLOWS; BEHAVIOR;
D O I
10.1007/s13367-013-0024-7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In the present work, the yield stress of complex materials is analyzed and modeled using the Bautista-Manero-Puig (BMP) constitutive equation, consisting of the upper-convected Maxwell equation coupled to a kinetic equation to account for the breakdown and reformation of the fluid structure. BMP model predictions for a complex fluid in different flow situations are analyzed and compared with yield stress predictions of other rheological models, and with experiments on fluids that exhibit yield stresses. It is shown that one of the main features of the BMP model is that it predicts a real yield stress (elastic solid or Hookean behavior) as one of the material parameters, the zero shear-rate fluidity, is zero. In addition, the transition to fluid-like behavior is continuous, as opposed to predictions of more empirical models.
引用
收藏
页码:233 / 242
页数:10
相关论文
共 50 条
  • [31] YIELD STRESS OF FRACTAL AGGREGATES
    Xi, Yue
    Chen, Jinjian
    Xu, Yongfu
    Chu, Feifei
    Liu, Chuanxin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2015, 23 (03)
  • [32] INTERPRETATION OF T-BAR TOOL MEASUREMENTS FOR YIELD STRESS MATERIALS
    Anderson, V. J.
    Meeten, G. H.
    APPLIED RHEOLOGY, 2012, 22 (05) : 553701 - 553709
  • [33] Experimental Determination of the Yield Stress Curve of the Scotch Pine Wood Materials
    Gunay, Ezgi
    Aygun, Cevdet
    Kaya, Sukru Tayfun
    3RD INTERNATIONAL ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE CONGRESS, 2013, 1569 : 65 - 72
  • [34] Implications of the yield stress/tensile stress ratio to the SINTAP failure assessment diagrams for homogeneous materials
    Bannister, AC
    Ocejo, JR
    Gutierrez-Solana, F
    ENGINEERING FRACTURE MECHANICS, 2000, 67 (06) : 547 - 562
  • [35] Determination of critical stress triaxiality along yield locus of isotropic ductile materials under plane strain condition
    Bhadauria, S. S.
    Pathak, K. K.
    Hora, M. S.
    MATERIALS SCIENCE-POLAND, 2012, 30 (03): : 197 - 203
  • [36] A modern look on yield stress fluids
    Malkin, Alexander
    Kulichikhin, Valery
    Ilyin, Sergey
    RHEOLOGICA ACTA, 2017, 56 (03) : 177 - 188
  • [37] Hysteretic behaviors of yield stress in smart ER/MR materials: Experimental results
    Han, Y. M.
    Nguyen, Q. H.
    Choi, S. B.
    Kim, K. S.
    Experimental Mechanics in Nano and Biotechnology, Pts 1 and 2, 2006, 326-328 : 1459 - 1462
  • [38] Displacement flow of yield stress materials in annular spaces of variable cross section
    Tobar Espinoza, Pedro J.
    Varges, Priscilla R.
    Rodrigues, Elias C.
    Naccache, Monica F.
    de Souza Mendes, Paulo R.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [39] Stress bifurcation in large amplitude oscillatory shear of yield stress fluids
    Yang, Kai
    Liu, Zhiwei
    Wang, Jun
    Yu, Wei
    JOURNAL OF RHEOLOGY, 2018, 62 (01) : 89 - 106
  • [40] A homogenization model for the rheology and local field statistics of suspensions of particles in yield stress fluids
    Kammer, Christoph
    Blackwell, Brendan
    Arratia, Paulo E.
    Castaneda, Pedro Ponte
    JOURNAL OF RHEOLOGY, 2022, 66 (03) : 535 - 549