Modified Block Pulse Functions for Numerical Solution of Stochastic Volterra Integral Equations

被引:11
作者
Maleknejad, K. [1 ]
Khodabin, M. [1 ]
Shekarabi, F. Hosseini [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Karaj Branch, Karaj, Iran
关键词
OPERATIONAL MATRIX;
D O I
10.1155/2014/469308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new technique for solving numerically stochastic Volterra integral equation based on modified block pulse functions. It declares that the rate of convergence of the presented method is faster than the method based on block pulse functions. Efficiency of this method and good degree of accuracy are confirmed by a numerical example.
引用
收藏
页数:10
相关论文
共 20 条
[1]  
[Anonymous], 1998, Stochastic differential equations
[2]  
Appley J. A., 2007, J. Integral Equ. Appl., V19, P405
[3]   A numerical method for solving Fredholm-Volterra integral equations in two-dimensional spaces using block pulse functions and an operational matrix [J].
Babolian, E. ;
Maleknejad, K. ;
Mordad, M. ;
Rahimi, B. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (14) :3965-3971
[4]  
Berger MA., 1980, J. Integral Equ, V2, P187
[5]   Strong convergence of Euler-type methods for nonlinear stochastic differential equations [J].
Higham, DJ ;
Mao, XR ;
Stuart, AM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (03) :1041-1063
[6]   ONE LINEAR ANALYTIC APPROXIMATION FOR STOCHASTIC INTEGRODIFFERENTIAL EQUATIONS [J].
Jankovic, Svetlana ;
Ilic, Dejan .
ACTA MATHEMATICA SCIENTIA, 2010, 30 (04) :1073-1085
[7]   Numerical solution of stochastic differential equations by second order Runge-Kutta methods [J].
Khodabin, M. ;
Maleknejad, K. ;
Rostami, M. ;
Nouri, M. .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (9-10) :1910-1920
[8]  
Klebaner F. C., 2005, INTODUCTION STOCHAST, VSecond
[9]  
Kloeden P., 1992, NUMERICAL SOLUTION S
[10]   Numerical solution of integral equations system of the second kind by Block-Pulse functions [J].
Maleknejad, K ;
Shahrezaee, M ;
Khatami, H .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 166 (01) :15-24