Determination of chaotic attractors in the rat brain

被引:18
|
作者
Celletti, A [1 ]
Villa, AEP [1 ]
机构
[1] UNIV LAUSANNE,INST PHYSIOL,LAB NEUROHEURIST,CH-1005 LAUSANNE,SWITZERLAND
关键词
chaos; nonlinear dynamics; correlation dimension; entropy; spike-trains; electrophysiology;
D O I
10.1007/BF02174137
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The existence of low-dimensional deterministic structures in experimental time series, derived from the occurrences of spikes in electrophysiological recordings from rat brains, has been revealed in 7 out of 27 samples. The correlation dimension of the chaotic attractors ranged between 0.14 and 3.3 embedded in a space of dimension 2-6. A test on surrogate data was also performed.
引用
收藏
页码:1379 / 1385
页数:7
相关论文
共 50 条
  • [21] Practical stability of chaotic attractors
    Kapitaniak, T
    Brindley, J
    CHAOS SOLITONS & FRACTALS, 1998, 9 (1-2) : 43 - 50
  • [22] Chaotic system with bondorbital attractors
    Zhang, Xin
    Wang, Chunhua
    Yao, Wei
    Lin, Hairong
    NONLINEAR DYNAMICS, 2019, 97 (04) : 2159 - 2174
  • [23] Automatic synthesis of chaotic attractors
    Sanchez-Lopez, C.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) : 4350 - 4358
  • [24] Chaotic system with bondorbital attractors
    Xin Zhang
    Chunhua Wang
    Wei Yao
    Hairong Lin
    Nonlinear Dynamics, 2019, 97 : 2159 - 2174
  • [25] Detecting variation in chaotic attractors
    Carroll, T. L.
    CHAOS, 2011, 21 (02)
  • [26] ON A CLASS OF SYMMETRICAL CHAOTIC ATTRACTORS
    KOCAREV, L
    PHYSICS LETTERS A, 1988, 130 (01) : 7 - 10
  • [27] Chaotic attractors with the symmetry of the dodecahedron
    Reiter, CA
    VISUAL COMPUTER, 1999, 15 (04): : 211 - 215
  • [28] Chaotic attractors of atmospheric models
    Dymnikov, VP
    Gritsoun, AS
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2002, 17 (03) : 249 - 281
  • [29] Coherent motion of chaotic attractors
    Louodop, Patrick
    Saha, Suman
    Tchitnga, Robert
    Muruganandam, Paulsamy
    Dana, Syamal K.
    Cerdeira, Hilda A.
    PHYSICAL REVIEW E, 2017, 96 (04)
  • [30] A lot of strange attractors: Chaotic or not?
    Badard, R.
    CHAOS, 2008, 18 (02)