A Density Functional Study of Furofuran Polymers as Potential Materials for Polymer Solar Cells

被引:12
作者
Xie, Xiao-Hua [1 ]
Shen, Wei [1 ]
He, Rong-Xing [1 ]
Li, Ming [1 ]
机构
[1] Southwest Univ, Sch Chem & Chem Engn, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Electronic property; Furofuran; Polymer solar cell; Open-circuit voltage; OPEN-CIRCUIT VOLTAGE; ELECTRONIC-STRUCTURE; CONJUGATED OLIGOMERS; CHARGE-TRANSFER; BAND-STRUCTURE; EFFICIENT; ENERGY; AROMATICITY; DEPENDENCE; COPOLYMER;
D O I
10.5012/bkcs.2013.34.10.2995
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The structural, electronic, and optical properties of poly(3-hexylthiophene) (P3HT) have been comprehensively studied by density functional theory (DFT) to rationalize the experimentally observed properties. Rather, we employed periodic boundary conditions (PBC) method to simulate the polymer block, and calculated effective charge mass from the band structure calculation for describing charge transport properties. The simulated results of P3HT are consistent with the experimental results in band gaps, absorption spectra, and effective charge mass. Based on the same calculated methods as P3HT, a series of polymers have been designed on the basis of the two types of building blocks, furofurans and furofurans substituted with cyano (CN) groups, to investigate suitable polymers toward polymer solar cell (PS C) materials. The calculated results reveal that the polymers substituted with CN groups have good structural stability, low-lying FMO energy levels, wide absorption spectra, and smaller effective masses, which are due to their good rigidity and conjugation in comparison with P3HT. Besides, the insertion of CN groups improves the performance of PSC. Synthetically, the designed polymers PFF1 and PFF2 are the champion candidates toward PSC relative to P3HT.
引用
收藏
页码:2995 / 3004
页数:10
相关论文
共 64 条
[31]   p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells [J].
Irwin, Michael D. ;
Buchholz, Bruce ;
Hains, Alexander W. ;
Chang, Robert P. H. ;
Marks, Tobin J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (08) :2783-2787
[32]   Efficient tandem polymer solar cells fabricated by all-solution processing [J].
Kim, Jin Young ;
Lee, Kwanghee ;
Coates, Nelson E. ;
Moses, Daniel ;
Nguyen, Thuc-Quyen ;
Dante, Mark ;
Heeger, Alan J. .
SCIENCE, 2007, 317 (5835) :222-225
[33]   Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor [J].
Kooistra, Floris B. ;
Knol, Joop ;
Kastenberg, Fredrik ;
Popescu, Lacramioara M. ;
Verhees, Wiljan J. H. ;
Kroon, Jan M. ;
Hummelen, Jan C. .
ORGANIC LETTERS, 2007, 9 (04) :551-554
[34]   Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells -: art. no. 123509 [J].
Koster, LJA ;
Mihailetchi, VD ;
Ramaker, R ;
Blom, PWM .
APPLIED PHYSICS LETTERS, 2005, 86 (12) :1-3
[35]   A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies [J].
Krebs, Frederik C. ;
Gevorgyan, Suren A. ;
Alstrup, Jan .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (30) :5442-5451
[36]   All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps [J].
Krebs, Frederik C. .
ORGANIC ELECTRONICS, 2009, 10 (05) :761-768
[37]   Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing [J].
Krebs, Frederik C. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (04) :465-475
[38]   Small bandgap polymers for organic solar cells (polymer material development in the last 5 years) [J].
Kroon, Renee ;
Lenes, Martijn ;
Hummelen, Jan C. ;
Blom, Paul W. M. ;
De Boer, Bert .
POLYMER REVIEWS, 2008, 48 (03) :531-582
[39]   Linear-scaling density-functional theory with Gaussian orbitals and periodic boundary conditions: Efficient evaluation of energy and forces via the fast multipole method [J].
Kudin, KN ;
Scuseria, GE .
PHYSICAL REVIEW B, 2000, 61 (24) :16440-16453
[40]   DEVELOPMENT OF THE COLLE-SALVETTI CORRELATION-ENERGY FORMULA INTO A FUNCTIONAL OF THE ELECTRON-DENSITY [J].
LEE, CT ;
YANG, WT ;
PARR, RG .
PHYSICAL REVIEW B, 1988, 37 (02) :785-789