An accurate active set conjugate gradient algorithm with project search for bound constrained optimization

被引:4
作者
Cheng, Wanyou [1 ]
Liu, Qunfeng [1 ]
Li, Donghui [2 ]
机构
[1] Dongguan Univ Technol, Coll Comp, Dongguan 523000, Peoples R China
[2] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
关键词
Box constrained optimization; PRP method; Global convergence; QUADRATIC-PROGRAMMING PROBLEMS; NEWTON ALGORITHM; GLOBAL CONVERGENCE; IDENTIFICATION; DESCENT;
D O I
10.1007/s11590-013-0609-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the paper, we propose an active set identification technique which accurately identifies active constraints in a neighborhood of an isolated stationary point without strict complementarity conditions. Based on the identification technique, we propose a conjugate gradient algorithm for large-scale bound constrained optimization. In the algorithm, the recently developed modified Polak-Ribi,re-Polyak method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. Under appropriate conditions, we show that the proposed method is globally convergent. Numerical experiments are presented using bound constrained problems in the CUTEr test problem library.
引用
收藏
页码:763 / 776
页数:14
相关论文
共 25 条
[1]   Nonmonotone spectral projected gradient methods on convex sets [J].
Birgin, EG ;
Martínez, JM ;
Raydan, M .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (04) :1196-1211
[2]   Large-scale active-set box-constrained optimization method with spectral projected gradients [J].
Birgin, EG ;
Martínez, JM .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 23 (01) :101-125
[3]   CUTE - CONSTRAINED AND UNCONSTRAINED TESTING ENVIRONMENT [J].
BONGARTZ, I ;
CONN, AR ;
GOULD, N ;
TOINT, PL .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (01) :123-160
[4]   ON THE IDENTIFICATION OF ACTIVE CONSTRAINTS [J].
BURKE, JV ;
MORE, JJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (05) :1197-1211
[5]   A LIMITED MEMORY ALGORITHM FOR BOUND CONSTRAINED OPTIMIZATION [J].
BYRD, RH ;
LU, PH ;
NOCEDAL, J ;
ZHU, CY .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (05) :1190-1208
[6]   A GLOBALLY CONVERGENT AUGMENTED LAGRANGIAN ALGORITHM FOR OPTIMIZATION WITH GENERAL CONSTRAINTS AND SIMPLE BOUNDS [J].
CONN, AR ;
GOULD, NIM ;
TOINT, PL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (02) :545-572
[7]   GLOBAL CONVERGENCE OF A CLASS OF TRUST REGION ALGORITHMS FOR OPTIMIZATION WITH SIMPLE BOUNDS [J].
CONN, AR ;
GOULD, NIM ;
TOINT, PL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (02) :433-460
[8]   Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming [J].
Dai, YH ;
Fletcher, R .
NUMERISCHE MATHEMATIK, 2005, 100 (01) :21-47
[9]  
Dai YH, 2006, IMA J NUMER ANAL, V26, P604, DOI [10.1093/imanum/drl006, 10.1093/imanum/dri006]
[10]   ON THE IDENTIFICATION PROPERTY OF A PROJECTED GRADIENT-METHOD [J].
DEANGELIS, PL ;
TORALDO, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (05) :1483-1497