Genomic islands from five strains of Burkholderia pseudomallei

被引:78
|
作者
Tuanyok, Apichai [1 ]
Leadem, Benjamin R. [1 ]
Auerbach, Raymond K. [1 ]
Beckstrom-Sternberg, Stephen M. [1 ,2 ]
Beckstrom-Sternberg, James S. [1 ]
Mayo, Mark [3 ]
Wuthiekanun, Vanaporn [4 ]
Brettin, Thomas S. [5 ]
Nierman, William C. [6 ,7 ]
Peacock, Sharon J. [4 ]
Currie, Bart J. [3 ]
Wagner, David M. [1 ]
Keim, Paul [1 ,2 ]
机构
[1] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
[2] Translat Genom Res Inst, Phoenix, AZ 85004 USA
[3] Charles Darwin Univ, Menzies Sch Hlth Res, Darwin, NT 0909, Australia
[4] Mahidol Univ, Mahidol Oxford Res Unit, Bangkok 10700, Thailand
[5] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[6] J Craig Venter Inst, Rockville, MD 20850 USA
[7] George Washington Univ, Washington, DC 20037 USA
关键词
D O I
10.1186/1471-2164-9-566
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Burkholderia pseudomallei is the etiologic agent of melioidosis, a significant cause of morbidity and mortality where this infection is endemic. Genomic differences among strains of B. pseudomallei are predicted to be one of the major causes of the diverse clinical manifestations observed among patients with melioidosis. The purpose of this study was to examine the role of genomic islands (GIs) as sources of genomic diversity in this species. Results: We found that genomic islands (GIs) vary greatly among B. pseudomallei strains. We identified 71 distinct GIs from the genome sequences of five reference strains of B. pseudomallei: K96243, 1710b, 1106a, MSHR668, and MSHR305. The genomic positions of these GIs are not random, as many of them are associated with tRNA gene loci. In particular, the 3' end sequences of tRNA genes are predicted to be involved in the integration of GIs. We propose the term "tRNA-mediated site-specific recombination" (tRNA-SSR) for this mechanism. In addition, we provide a GI nomenclature that is based upon integration hotspots identified here or previously described. Conclusion: Our data suggest that acquisition of GIs is one of the major sources of genomic diversity within B. pseudomallei and the molecular mechanisms that facilitate horizontally-acquired GIs are common across multiple strains of B. pseudomallei. The differential presence of the 71 GIs across multiple strains demonstrates the importance of these mobile elements for shaping the genetic composition of individual strains and populations within this bacterial species.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Toxin production by Burkholderia pseudomallei strains and correlation with severity of melioidosis
    Haase, A
    Janzen, J
    Barrett, S
    Currie, B
    JOURNAL OF MEDICAL MICROBIOLOGY, 1997, 46 (07) : 557 - 563
  • [22] Characterization of Burkholderia pseudomallei O antigens in different clinical strains
    Huo, Shengyuan
    Li, Xiao
    Wang, Shiwei
    Wu, Pan
    Nan, Dongqi
    Rao, Chenglong
    Li, Qian
    Mao, Xuhu
    Yan, Jingmin
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 225 : 795 - 808
  • [23] Activity of five fluoroquinolones against 71 isolates of Burkholderia pseudomallei
    Ho, PL
    Cheung, TKM
    Kinoshita, R
    Tse, CWS
    Yuen, KY
    Chau, PY
    JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2002, 49 (06) : 1042 - 1043
  • [24] Subclinical Burkholderia pseudomallei Infection Associated with Travel to the British Virgin Islands
    Dewart, Courtney M.
    Almeida, Francisco A.
    Koval, Christine
    Nowicki, Scott
    Gee, Jay E.
    Elrod, Mindy Glass
    Gulvik, Christopher A.
    Salzer, Johanna S.
    de Fijter, Sietske
    Liu, Lindy
    EMERGING INFECTIOUS DISEASES, 2021, 27 (12) : 3182 - 3184
  • [25] The Genomic Epidemiology of Clinical Burkholderia pseudomallei Isolates in North Queensland, Australia
    Gassiep, Ian
    Chatfield, Mark D.
    Permana, Budi
    Burnard, Delaney
    Bauer, Michelle J.
    Cuddihy, Thom
    Forde, Brian M.
    Mayer-Coverdale, Johanna
    Norton, Robert E.
    Harris, Patrick N. A.
    PATHOGENS, 2024, 13 (07):
  • [26] Genomic comparison and phenotypic profiling of small colony variants of Burkholderia pseudomallei
    Zulkefli, Noorfatin Jihan
    Teh, Cindy Shuan Ju
    Mariappan, Vanitha
    Ngoi, Soo Tein
    Vadivelu, Jamuna
    Ponnampalavanar, Sasheela
    Chai, Lay Ching
    Chong, Chun Wie
    Yap, Ivan Kok Seng
    Vellasamy, Kumutha Malar
    PLOS ONE, 2021, 16 (12):
  • [27] Recurrent melioidosis:: Possible role of infection with multiple strains of Burkholderia pseudomallei
    Pitt, Tyrone L.
    Trakulsomboon, Suwanna
    Dance, David A. B.
    JOURNAL OF CLINICAL MICROBIOLOGY, 2007, 45 (02) : 680 - 681
  • [28] Genomic Epidemiology Links Burkholderia pseudomallei from Individual Human Cases to B. pseudomallei from Targeted Environmental Sampling in Northern Australia
    Webb, Jessica R.
    Mayo, Mark
    Rachlin, Audrey
    Woerle, Celeste
    Meumann, Ella
    Rigas, Vanessa
    Harrington, Glenda
    Kaestli, Mirjam
    Currie, Bart J.
    JOURNAL OF CLINICAL MICROBIOLOGY, 2022, 60 (03)
  • [29] Sesquiterpene Farnesol Contributes to Increased Susceptibility to β-Lactams in Strains of Burkholderia pseudomallei
    Brilhante, R. S. N.
    Valente, L. G. A.
    Rocha, M. F. G.
    Bandeira, T. J. P. G.
    Cordeiro, R. A.
    Lima, R. A. C.
    Leite, J. J. G.
    Ribeiro, J. F.
    Pereira, J. F.
    Castelo-Branco, D. S. C. M.
    Monteiro, A. J.
    Sidrim, J. J. C.
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2012, 56 (04) : 2198 - 2200
  • [30] Protection against heterologous Burkholderia pseudomallei strains by dendritic cell immunization
    Elvin, SJ
    Healey, GD
    Westwood, A
    Knight, SC
    Eyles, JE
    Williamson, ED
    INFECTION AND IMMUNITY, 2006, 74 (03) : 1706 - 1711