Double-wave-vector diffusion-weighted imaging reveals microscopic diffusion anisotropy in the living human brain

被引:61
作者
Lawrenz, Marco [1 ,2 ]
Finsterbusch, Juergen [1 ,2 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf, Dept Syst Neurosci, Hamburg, Germany
[2] Univ Med Ctr Hamburg Kiel Lubeck, Neuroimage Nord, Hamburg, Germany
关键词
double-wave-vector diffusion weighting; DWV; double-pulsed-field-gradient (d-PFG); cell eccentricity; microscopic diffusion anisotropy; fractional anisotropy; white matter integrity; COMPARTMENT SHAPE ANISOTROPY; SIZE ESTIMATION; NMR; FEATURES; TISSUES;
D O I
10.1002/mrm.24347
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Diffusion-tensor imaging is widely used to characterize diffusion in biological tissue, however, the derived anisotropy information, e.g., the fractional anisotropy, is ambiguous. For instance, low values of the diffusion anisotropy in brain white matter voxels may reflect a reduced axon density, i.e., a loss of fibers, or a lower fiber coherence within the voxel, e.g., more crossing fibers. This ambiguity can be avoided with experiments involving two diffusion-weighting periods applied successively in a single acquisition, so-called double-wave-vector or double-pulsed-field-gradient experiments. For a long mixing time between the two periods such experiments are sensitive to the cells' eccentricity, i.e., the diffusion anisotropy present on a microscopic scale. In this study, it is shown that this microscopic diffusion anisotropy can be detected in white matter in the living human brain, even in a macroscopically isotropic region-of-interest (fractional anisotropy = 0). The underlying signal difference between parallel and orthogonal wave vector orientations does not show up in standard diffusion-weighting experiments but is specific to the double-wave-vector experiment. Furthermore, the modulation amplitude observed is very similar for regions-of-interest with different fractional anisotrpy values. Thus, double-wave-vector experiments may provide a direct and reliable access to white matter integrity independent of the actual fiber orientation distribution within the voxel. Magn Reson Med 69:10721082, 2013. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:1072 / 1082
页数:11
相关论文
共 28 条
  • [1] Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain
    Assaf, Y
    Basser, PJ
    [J]. NEUROIMAGE, 2005, 27 (01) : 48 - 58
  • [2] AxCaliber: A method for measuring axon diameter distribution from diffusion MRI
    Assaf, Yaniv
    Blumenfeld-Katzir, Tamar
    Yovel, Yossi
    Basser, Peter J.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2008, 59 (06) : 1347 - 1354
  • [3] MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING
    BASSER, PJ
    MATTIELLO, J
    LEBIHAN, D
    [J]. BIOPHYSICAL JOURNAL, 1994, 66 (01) : 259 - 267
  • [4] Inferring microstructural features and the physiological state of tissues from diffusion-weighted images
    Basser, PJ
    [J]. NMR IN BIOMEDICINE, 1995, 8 (7-8) : 333 - 344
  • [5] Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI [10.1006/jmrb.1996.0086, 10.1016/j.jmr.2011.09.022]
  • [6] Multiple scattering by NMR
    Cheng, Y
    Cory, DG
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (34) : 7935 - 7936
  • [7] Cory DG., 1990, POLYM PREPR-ACS, V31, P149
  • [8] Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy
    Jespersen, Sune N.
    Bjarkam, Carsten R.
    Nyengaard, Jens R.
    Chakravarty, M. Mallar
    Hansen, Brian
    Vosegaard, Thomas
    Ostergaard, Leif
    Yablonskiy, Dmitriy
    Nielsen, Niels Chr.
    Vestergaard-Poulsen, Peter
    [J]. NEUROIMAGE, 2010, 49 (01) : 205 - 216
  • [9] Equivalence of double and single wave vector diffusion contrast at low diffusion weighting
    Jespersen, Sune Norhoj
    [J]. NMR IN BIOMEDICINE, 2012, 25 (06) : 813 - 818
  • [10] Compartment size estimation with double wave vector diffusion-weighted Imaging
    Koch, Martin A.
    Finsterbusch, Juergen
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2008, 60 (01) : 90 - 101