Inexact Bregman iteration with an application to Poisson data reconstruction

被引:19
作者
Benfenati, A. [1 ]
Ruggiero, V. [2 ,3 ]
机构
[1] Univ Ferrara, Dipartimento Matemat, I-44122 Ferrara, Italy
[2] Univ Ferrara, Dipartimento Matemat, I-44100 Ferrara, Italy
[3] Univ Ferrara, LTTA Lab, I-44100 Ferrara, Italy
关键词
VARIATIONAL APPROACH; ALGORITHMS; MINIMIZATION; RESTORATION;
D O I
10.1088/0266-5611/29/6/065016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work deals with the solution of image restoration problems by an iterative regularization method based on the Bregman iteration. Any iteration of this scheme requires the exact computation of the minimizer of a function. However, in some image reconstruction applications, it is either impossible or extremely expensive to obtain exact solutions of these subproblems. In this paper, we propose an inexact version of the iterative procedure, where the inexactness in the inner subproblem solution is controlled by a criterion that preserves the convergence of the Bregman iteration and its features in image restoration problems. In particular, the method allows us to obtain accurate reconstructions also when only an overestimation of the regularization parameter is known. The introduction of the inexactness in the iterative scheme allows us to address image reconstruction problems from data corrupted by Poisson noise, exploiting the recent advances about specialized algorithms for the numerical minimization of the generalized Kullback-Leibler divergence combined with a regularization term. The results of several numerical experiments enable us to evaluate the proposed scheme for image deblurring or denoising in the presence of Poisson noise.
引用
收藏
页数:31
相关论文
共 41 条
[1]   Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation [J].
Bardsley, Johnathan M. ;
Goldes, John .
INVERSE PROBLEMS, 2009, 25 (09)
[2]   Total variation-penalized Poisson likelihood estimation for ill-posed problems [J].
Bardsley, Johnathan M. ;
Luttman, Aaron .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2009, 31 (1-3) :35-59
[3]   A discrepancy principle for Poisson data [J].
Bertero, M. ;
Boccacci, P. ;
Talenti, G. ;
Zanella, R. ;
Zanni, L. .
INVERSE PROBLEMS, 2010, 26 (10)
[4]   Image deblurring with Poisson data: from cells to galaxies [J].
Bertero, M. ;
Boccacci, P. ;
Desidera, G. ;
Vicidomini, G. .
INVERSE PROBLEMS, 2009, 25 (12)
[5]   Scaling techniques for gradient projection-type methods in astronomical image deblurring [J].
Bonettini, S. ;
Landi, G. ;
Piccolomini, E. Loli ;
Zanni, L. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (01) :9-29
[6]   An alternating extragradient method for total variation-based image restoration from Poisson data [J].
Bonettini, S. ;
Ruggiero, V. .
INVERSE PROBLEMS, 2011, 27 (09)
[7]   On the Uniqueness of the Solution of Image Reconstruction Problems with Poisson Data [J].
Bonettini, S. ;
Ruggiero, V. .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 :1803-1806
[8]   A scaled gradient projection method for constrained image deblurring [J].
Bonettini, S. ;
Zanella, R. ;
Zanni, L. .
INVERSE PROBLEMS, 2009, 25 (01)
[9]   On the Convergence of Primal-Dual Hybrid Gradient Algorithms for Total Variation Image Restoration [J].
Bonettini, Silvia ;
Ruggiero, Valeria .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2012, 44 (03) :236-253
[10]  
Bregman L. M., 1967, USSR Comput Math Math Phys, V7, P200, DOI [10.1016/0041-5553(67)90040-7, DOI 10.1016/0041-5553(67)90040-7]