Hydrogen production and COD elimination rate in a continuous microbial electrolysis cell: The influence of hydraulic retention time and applied voltage

被引:32
作者
Escapa, A. [1 ]
Lobato, A. [1 ]
Garcia, D. M. [1 ]
Moran, A. [1 ]
机构
[1] Univ Leon, Nat Resources Inst IRENA, Dept Chem & Environm Engn, E-24071 Leon, Spain
关键词
microbial electrolysis cell; applied voltage; hydraulic retention time; hydrogen; FUEL-CELL; BIOHYDROGEN PRODUCTION; ELECTRICITY; PERFORMANCE; DESIGN;
D O I
10.1002/ep.11619
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The influence of the applied voltage (Vapp) and the hydraulic retention time (HRT) on hydrogen and methane production and the removal rate for chemical oxygen demand (COD) was studied in a membrane-less microbial electrolysis cell with a Ni-based cathode. When a synthetic effluent from a dark-fermentation process was fed continuously into the anodic chamber, an increase in both the Vapp (from 0.6 to 1.0 V) and HRT (from 8 to 12 h) increased the hydrogen production rate from 0.18 to 1.42 L LA1 d1 (liters per liter of anode per day) and the COD elimination rate from 46 to 94%. The influences of Vapp and HRT on hydrogen production and the COD removal rate were found to be interdependent. Whereas acetic and butyric acids were easily degraded, propionic acid exhibited pseudo-recalcitrant behavior. (c) 2012 American Institute of Chemical Engineers Environ Prog, 32: 263-268, 2013
引用
收藏
页码:263 / 268
页数:6
相关论文
共 35 条
[1]   Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane [J].
Call, Douglas ;
Logan, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (09) :3401-3406
[2]   Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells [J].
Chae, Kyu-Jung ;
Choi, Mi-Jin ;
Kim, Kyoung-Yeol ;
Ajayi, F. F. ;
Chang, In-Seop ;
Kim, In S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (24) :13379-13386
[3]  
Cheng S, 2007, P NATL ACAD SCI USA, V104, P18871, DOI 10.1073/pnas.0706379104
[4]   Evaluation and simultaneous optimization of bio-hydrogen production using 32 factorial design and the desirability function [J].
Cuetos, M. J. ;
Gomez, X. ;
Escapa, A. ;
Moran, A. .
JOURNAL OF POWER SOURCES, 2007, 169 (01) :131-139
[5]  
Davis R.D., 1997, EUROPEAN WATER POLLU, V7, P9
[6]   Hydrogen Production from Glycerol in a Membraneless Microbial Electrolysis Cell [J].
Escapa, A. ;
Manuel, M. -F. ;
Moran, A. ;
Gomez, X. ;
Guiot, S. R. ;
Tartakovsky, B. .
ENERGY & FUELS, 2009, 23 (09) :4612-4618
[7]   Effect of electrode potential on electrode-reducing microbiota [J].
Finkelstein, David A. ;
Tender, Leonard M. ;
Zeikus, J. Gregory .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (22) :6990-6995
[8]   Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation [J].
Freguia, Stefano ;
Rabaey, Korneel ;
Yuan, Zhiguo ;
Keller, Jurg .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (08) :2915-2921
[9]   Operational parameters affecting the performance of a mediator-less microbial fuel cell [J].
Gil, GC ;
Chang, IS ;
Kim, BH ;
Kim, M ;
Jang, JK ;
Park, HS ;
Kim, HJ .
BIOSENSORS & BIOELECTRONICS, 2003, 18 (04) :327-334
[10]   Hydrogen production: Two stage processes for waste degradation [J].
Gomez, X. ;
Fernandez, C. ;
Fierro, J. ;
Sanchez, M. E. ;
Escapa, A. ;
Moran, A. .
BIORESOURCE TECHNOLOGY, 2011, 102 (18) :8621-8627