Supereulerian Graphs with Constraints on the Matching Number and Minimum Degree

被引:2
作者
Algefari, Mansour J. [1 ]
Lai, Hong-Jian [2 ]
机构
[1] Qassim Univ, Community Coll, Dept Management & Humanities Sci, Buraydah, Saudi Arabia
[2] West Virginia Univ, Dept Math, Morgantown, WV 26506 USA
关键词
Supereulerian graph; Hamiltonian line graph; Matching; Minimum degree; Contraction;
D O I
10.1007/s00373-020-02229-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is supereulerian if it has a spanning eulerian subgraph. We show that a connected simple graph G with n=vertical bar V(G)vertical bar >= 2 and delta(G)>=alpha '(G) is supereulerian if and only if G not equal K-1,K-n-1 if n is even or G not equal K-2,K-n-2 if n is odd. Consequently, every connected simple graph G with delta(G) >= alpha '(G) has a hamiltonian line graph.
引用
收藏
页码:55 / 64
页数:10
相关论文
共 17 条
[1]  
[安明强 An Mingqiang], 2016, [应用数学学报, Acta Mathematicae Applicatae Sinica], V39, P871
[2]   Sufficient Conditions for a Digraph to be Supereulerian [J].
Bang-Jensen, Jorgen ;
Maddaloni, Alessandro .
JOURNAL OF GRAPH THEORY, 2015, 79 (01) :8-20
[4]  
Boesch F. T., 1977, J. Graph Theory, V1, P79
[5]  
Bondy J. A., 2008, GRAPH THEORY
[6]   A REDUCTION METHOD TO FIND SPANNING EULERIAN SUBGRAPHS [J].
CATLIN, PA .
JOURNAL OF GRAPH THEORY, 1988, 12 (01) :29-44
[7]   SUPEREULERIAN GRAPHS - A SURVEY [J].
CATLIN, PA .
JOURNAL OF GRAPH THEORY, 1992, 16 (02) :177-196
[8]  
CHEN ZH, 1995, COMBINATORICS GRAPH, P53
[9]  
Chvatal V., 1972, Discrete Math., V2, P111, DOI DOI 10.1016/0012-365X(72)90079-9
[10]   The Chvatal-Erdos condition for supereulerian graphs and the Hamiltonian index [J].
Han, Longsheng ;
Lai, Hong-Jian ;
Xiong, Liming ;
Yan, Huiya .
DISCRETE MATHEMATICS, 2010, 310 (15-16) :2082-2090