Acoustic impedance and interface phonon scattering in Bi2Te3 and other semiconducting materials

被引:26
作者
Chen, Xin [1 ]
Parker, David [1 ]
Singh, David J. [1 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
来源
PHYSICAL REVIEW B | 2013年 / 87卷 / 04期
关键词
HIGH-THERMOELECTRIC PERFORMANCE; THERMAL-BOUNDARY RESISTANCE; HALF-HEUSLER COMPOUNDS; ELASTIC-MODULI; RADIATION TEMPERATURE; FILLED SKUTTERUDITES; LATTICE-DYNAMICS; CONDUCTIVITY; PRESSURE; DIAMOND;
D O I
10.1103/PhysRevB.87.045317
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present first-principles calculations of the phonon dispersions of Bi2Te3 along with calculations of the sound speed anisotropy for a number of materials, and we discuss these in relation to acoustic phonon interface scattering in ceramics. The Bi2Te3 phonon dispersions show agreement with what is known from neutron scattering for the optic modes, while we find a difference between the generalized gradient approximation and local density results for the acoustic branches. This is a consequence of an artificial compression of the van der Waals bonded gaps in the Bi2Te3 structure when using the generalized gradient approximation. As a result, local density approximation calculations provide a better description of the phonon dispersions in Bi2Te3. A key characteristic of the acoustic dispersions in several materials studied is the existence of a strong anisotropy in the velocities. Such an anisotropy may be a significant consideration in the reduction of lattice thermal conductivity by nanograin boundary scattering. This is a well-known technique commonly employed to improve thermoelectric performance. We develop a model to quantify the effect of this anisotropy for this interface scattering in ceramics, and we apply this to Bi2Te3 and compare with PbTe and several other semiconductors. DOI: 10.1103/PhysRevB.87.045317
引用
收藏
页数:8
相关论文
共 48 条
[1]   Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics:: Enhanced performance in Pb1-xSnxTe-PbS [J].
Androulakis, John ;
Lin, Chia-Her ;
Kong, Hun-Jin ;
Uher, Ctirad ;
Wu, Chun-I ;
Hogan, Timothy ;
Cook, Bruce A. ;
Caillat, Thierry ;
Paraskevopoulos, Konstantinos M. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (31) :9780-9788
[2]   High thermoelectric figure of merit in nanostructured p-type PbTe-MTe (M = Ca, Ba) [J].
Biswas, Kanishka ;
He, Jiaqing ;
Wang, Guoyu ;
Lo, Shih-Han ;
Uher, Ctirad ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (11) :4675-4684
[3]  
Blaha P., 2001, CALCULATING CRYST PR, V60
[4]   Growth and thermal conductivity analysis of polycrystalline GaAs on chemical vapor deposition diamond for use in thermal management of high-power semiconductor lasers [J].
Clark, S. P. R. ;
Ahirwar, P. ;
Jaeckel, F. T. ;
Hains, C. P. ;
Albrecht, A. R. ;
Rotter, T. J. ;
Dawson, L. R. ;
Balakrishnan, G. ;
Hopkins, P. E. ;
Phinney, L. M. ;
Hader, J. ;
Moloney, J. V. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2011, 29 (03)
[5]   ELASTIC-CONSTANTS OF GAAS FROM 2 K TO 320 K [J].
COTTAM, RI ;
SAUNDERS, GA .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1973, 6 (13) :2105-2118
[6]  
Ewing W.M., 1957, ELASTIC WAVES LAYERE
[7]   Anomaly in cia ratio of Zn under pressure [J].
Fast, L ;
Ahuja, R ;
Nordstrom, L ;
Wills, JM ;
Johansson, B ;
Eriksson, O .
PHYSICAL REVIEW LETTERS, 1997, 79 (12) :2301-2303
[8]   Lattice dynamics of skutterudites: First-principles and model calculations for CoSb3 [J].
Feldman, JL ;
Singh, DJ .
PHYSICAL REVIEW B, 1996, 53 (10) :6273-6282
[9]   THERMAL CONDUCTIVITY OF SILICON + GERMANIUM FROM 3 DEGREES K TO MELTING POINT [J].
GLASSBRENNER, CJ ;
SLACK, GA .
PHYSICAL REVIEW, 1964, 134 (4A) :1058-+
[10]   UNUSUALLY HIGH THERMAL-CONDUCTIVITY IN DIAMOND FILMS [J].
GRAEBNER, JE ;
JIN, S ;
KAMMLOTT, GW ;
HERB, JA ;
GARDINIER, CF .
APPLIED PHYSICS LETTERS, 1992, 60 (13) :1576-1578