Stability of the primal-dual partition in linear semi-infinite programming

被引:11
|
作者
Ochoa, Pablo D. [1 ]
Vera de Serio, Virginia N. [1 ]
机构
[1] Univ Nacl Cuyo, Fac Ciencias Econ, Inst Ciencias Basicas, RA-5500 Mendoza, Argentina
关键词
duality; primal-dual partition; stability; linear programming; semi-infinite programming; SEMI-INFINITE PROGRAMS; ILL-POSEDNESS; FEASIBLE SET; UPPER SEMICONTINUITY; METRIC REGULARITY; OPTIMIZATION; SOLVABILITY; DISTANCE; SYSTEMS; HAAR;
D O I
10.1080/02331934.2011.567271
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We analyse the primal-dual states in linear semi-infinite programming (LSIP), where we consider the primal problem and the so called Haar's dual problem. Any linear programming problem and its dual can be classified as bounded, unbounded or inconsistent, giving rise to nine possible primal-dual states, which are reduced to six by the weak duality property. Recently, Goberna and Todorov have studied this partition and its stability in continuous LSIP in a series of papers [M. A. Goberna and M. I. Todorov, Primal, dual and primal-dual partitions in continuous linear semi-infinite programming, Optimization 56 (2007), pp. 617-628; M. A. Goberna and M. I. Todorov, Generic primal-dual solvability in continuous linear semi-infinite programming, Optimization 57 (2008), pp. 239-248]. In this article we consider the general case, with no continuity assumptions, discussing the maintenance of the primal-dual state of the problem by allowing small perturbations of the data. We characterize the stability of all of the six possible primal-dual states through necessary and sufficient conditions which depend on the data, and can be easily checked, showing some differences with the continuous case. These conditions involve the strong Slater constraint qualification, and some distinguished convex sets associated to the data.
引用
收藏
页码:1449 / 1465
页数:17
相关论文
共 50 条
  • [1] Generic primal-dual solvability in continuous linear semi-infinite programming
    Goberna, M. A.
    Todorov, M. I.
    OPTIMIZATION, 2008, 57 (02) : 239 - 248
  • [2] PRIMAL-DUAL PARTITIONS IN LINEAR SEMI-INFINITE PROGRAMMING WITH BOUNDED COEFFICIENTS
    Barragan, Abraham B.
    Hernandez, Lidia A.
    Iusem, Alfredo N.
    Todorov, Maxim, I
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2020, 4 (02): : 207 - 223
  • [3] An inexact primal-dual algorithm for semi-infinite programming
    Wei, Bo
    Haskell, William B.
    Zhao, Sixiang
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2020, 91 (03) : 501 - 544
  • [4] An inexact primal-dual algorithm for semi-infinite programming
    Bo Wei
    William B. Haskell
    Sixiang Zhao
    Mathematical Methods of Operations Research, 2020, 91 : 501 - 544
  • [5] NEW PRIMAL-DUAL PARTITION OF THE SPACE OF LINEAR SEMI-INFINITE CONTINUOUS OPTIMIZATION PROBLEMS
    Barragan, Abraham B.
    Hernandez, Lidia A.
    Todorov, Maxim I.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2016, 69 (10): : 1263 - 1274
  • [6] A note on primal-dual stability in infinite linear programming
    Goberna, Miguel A.
    Lopez, Marco A.
    Ridolfi, Andrea B.
    Vera de Serio, Virginia N.
    OPTIMIZATION LETTERS, 2020, 14 (08) : 2247 - 2263
  • [7] A note on primal-dual stability in infinite linear programming
    Miguel A. Goberna
    Marco A. López
    Andrea B. Ridolfi
    Virginia N. Vera de Serio
    Optimization Letters, 2020, 14 : 2247 - 2263
  • [8] Solvability and Primal-dual Partitions of the Space of Continuous Linear Semi-infinite Optimization Problems
    Barragan, Abraham
    Hernandez, Lidia
    Todorov, Maxim
    COMPUTACION Y SISTEMAS, 2018, 22 (02): : 315 - 329
  • [9] A NEW PRIMAL ALGORITHM FOR SEMI-INFINITE LINEAR-PROGRAMMING
    ANDERSON, EJ
    LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1985, 259 : 108 - 122
  • [10] Primal-dual methods for linear programming
    Univ. Californa San Diego, dep. mathematics, La Jolla CA 92093, United States
    Mathematical Programming, Series B, 1995, 70 (03): : 251 - 277